Pregunta
Rewrite the following polynomial in standard form. \[ -10 x-\frac{x^{4}}{5}-6 \]
Ask by Chambers Haynes. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The polynomial in standard form is \(-\frac{1}{5}x^{4} - 10x - 6\).
Solución
To rewrite the polynomial \(-10x - \frac{x^{4}}{5} - 6\) in standard form, arrange the terms in descending order of their exponents. The standard form of a polynomial lists the terms starting with the highest degree first.
Here is the polynomial in standard form:
\[
-\frac{1}{5}x^{4} - 10x - 6
\]
**Explanation:**
1. **Identify the degrees of each term:**
- \(-\frac{x^{4}}{5}\) has a degree of 4.
- \(-10x\) has a degree of 1.
- \(-6\) is a constant term with a degree of 0.
2. **Arrange the terms in descending order of degree:**
- Start with the \(x^4\) term.
- Follow with the \(x\) term.
- End with the constant term.
3. **Simplify the coefficients (if necessary):**
- \(-\frac{x^{4}}{5}\) can be written as \(-\frac{1}{5}x^{4}\).
So, the final standard form is:
\[
-\frac{1}{5}x^{4} - 10x - 6
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To rewrite the polynomial in standard form, we need to arrange the terms in descending order of the degree. First, let's multiply \(-\frac{x^4}{5}\) by \(-1\) to rewrite it as \(\frac{x^4}{5}\). This gives us: \[ \frac{-1}{5}x^4 - 10x - 6 \] Now, arranging the terms in descending order of their degrees: \[ -\frac{1}{5}x^4 - 10x - 6 \] So, in standard form, the polynomial is: \[ -\frac{1}{5}x^4 - 10x - 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium