Pregunta
Rewrite the following polynomial in standard form. \[ 10 x-\frac{x^{4}}{5}-6 \]
Ask by Mcguire Powers. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The polynomial in standard form is \(-\frac{1}{5}x^{4} + 10x - 6\).
Solución
The polynomial \( 10x - \frac{x^{4}}{5} - 6 \) can be rewritten in standard form by arranging the terms in descending order of the degree of \( x \).
Here’s the step-by-step process:
1. **Identify the degrees of each term:**
- \(-\frac{x^4}{5}\) has degree 4.
- \(10x\) has degree 1.
- \(-6\) is a constant term with degree 0.
2. **Arrange the terms in descending order:**
- Start with the highest degree term: \(-\frac{x^4}{5}\).
- Follow with the next highest degree: \(10x\).
- End with the constant term: \(-6\).
So, the polynomial in standard form is:
\[
-\frac{1}{5}x^{4} + 10x - 6
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To rewrite the polynomial in standard form, we need to arrange the terms in descending order according to the power of \( x \). First, let's simplify the term \(-\frac{x^4}{5}\) and then combine all the terms together: \[ -\frac{x^4}{5} + 10x - 6 \] Now, express it in standard form: \[ -\frac{1}{5}x^4 + 10x - 6 \] So, the polynomial in standard form is: \[ -\frac{1}{5}x^4 + 10x - 6 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium