Pregunta
upstudy study bank question image url

\( m=\frac{1-6}{4-2} \quad\left(x_{1}, y_{1}\right)=(2,6) \) and \( \left(x_{2}, y_{2}\right)=(4,1) \) \( m=\frac{\square}{\square} \) or \( -2.5 \quad \) Simplify. Step 2 Determine the \( y \)-intercept and write the equation. The \( v \)-intercent ic ahnit 11 heraıco the line anopars to cros

Ask by Weston Barber. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope \( m \) is \(-2.5\), and the \( y \)-intercept is \(11\). The equation of the line is \( y = -2.5x + 11 \).

Solución

Sure, let's work through the problem step by step to find the equation of the line passing through the points \((2, 6)\) and \((4, 1)\). ### **Step 1: Calculate the Slope (\(m\))** The slope of a line (\(m\)) passing through two points \(\left(x_1, y_1\right)\) and \(\left(x_2, y_2\right)\) is given by the formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the given points \((2, 6)\) and \((4, 1)\): \[ m = \frac{1 - 6}{4 - 2} = \frac{-5}{2} = -2.5 \] So, the slope \(m\) is **\(-2.5\)**. ### **Step 2: Determine the \(y\)-Intercept (\(b\))** The equation of a straight line in slope-intercept form is: \[ y = mx + b \] We already know \(m = -2.5\), so the equation becomes: \[ y = -2.5x + b \] To find \(b\), substitute the coordinates of one of the given points into the equation. Let's use the point \((2, 6)\): \[ 6 = -2.5(2) + b \] \[ 6 = -5 + b \] \[ b = 6 + 5 = 11 \] So, the \(y\)-intercept \(b\) is **\(11\)**. ### **Step 3: Write the Final Equation** Now that we have both the slope and the \(y\)-intercept, we can write the equation of the line: \[ y = -2.5x + 11 \] ### **Summary** - **Slope (\(m\))**: \(-2.5\) - **\(y\)-Intercept (\(b\))**: \(11\) - **Equation of the Line**: \(y = -2.5x + 11\) ### **Graphical Interpretation** The \(y\)-intercept (\(b = 11\)) is the point where the line crosses the \(y\)-axis. This means when \(x = 0\), \(y = 11\). Plotting this point along with the slope will allow you to draw the line accurately on a graph. If you need further assistance or have any more questions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To simplify \( m=\frac{1-6}{4-2} \), we calculate the change in \( y \) over the change in \( x \): \( m=\frac{-5}{2} \), which equals \( -2.5 \). This slope indicates that for every unit moved right in the x-direction, the line moves down 2.5 units. Next, to find the \( y \)-intercept, we can use the point-slope form of the line. Starting from the slope-intercept form \( y = mx + b \), we substitute one of our points, say \( (2, 6) \), and our slope: \[ 6 = -2.5(2) + b \] This simplifies to \( 6 = -5 + b\) leading to \( b = 11 \). The equation of the line is \( y = -2.5x + 11 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad