Pregunta
Simplify. \[ \sqrt{v^{11}} \] Assume that the variable represents a positive real number. \( \square \)
Ask by Newton Osborne. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified form of \(\sqrt{v^{11}}\) is \(v^{5}\sqrt{v}\).
Solución
Calculate or simplify the expression \( \sqrt(v^{11}) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{v^{11}}\)
- step1: Rewrite the exponent:
\(\sqrt{v^{10+1}}\)
- step2: Expand the expression:
\(\sqrt{v^{10}\times v}\)
- step3: Use the properties of radicals:
\(\sqrt{v^{10}}\times \sqrt{v}\)
- step4: Simplify the root:
\(v^{5}\sqrt{v}\)
The simplified form of \(\sqrt{v^{11}}\) is \(v^{5}\sqrt{v}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( \sqrt{v^{11}} \), we can use the property of exponents that states \( \sqrt{x} = x^{1/2} \). Therefore: \[ \sqrt{v^{11}} = v^{11/2} \] Now, we can express \( 11/2 \) as a mixed number: \[ 11/2 = 5 \frac{1}{2} \] This means \( v^{11/2} \) can be written as: \[ v^{11/2} = v^5 \cdot v^{1/2} = v^5 \sqrt{v} \] So, the final simplified form is: \[ \sqrt{v^{11}} = v^5 \sqrt{v} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium