Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { 2. } 16 a^{0} \\ \text { 3. } \frac{2^{-2}}{3^{2}} & \text { 8. } \overline{a^{x}} \\ \text { 4. } \frac{5}{2^{-3}} & \text { 9. } \frac{32 p^{2}}{4 p^{8}} \\ \text { 5. }\left(\frac{2}{3}\right)^{-3} & \text { 10. }\left(2 t^{4}\right)^{3} \\ \left(3^{n+3}\right)^{2} \\ 3^{n} 9^{n-3}\end{array} \)

Ask by Chambers Mitchell. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified forms of the given expressions: 1. \( 16 a^{0} = 16 \) 2. \( \frac{2^{-2}}{3^{2}} = \frac{1}{36} \) 3. \( \frac{5}{2^{-3}} = 40 \) 4. \( \left(\frac{2}{3}\right)^{-3} = \frac{27}{8} \) 5. \( \overline{a^{x}} = \overline{a^{x}} \) (remains as is) 6. \( \frac{32 p^{2}}{4 p^{8}} = \frac{8}{p^{6}} \) 7. \( \left(2 t^{4}\right)^{3} = 8 t^{12} \) 8. \( \left(3^{n+3}\right)^{2} = 3^{2n + 6} \) 9. \( 3^{n} \times 9^{n-3} = 3^{3n - 6} \)

Solución

Sure! Let's simplify each of the given expressions step by step. --- ### **Problem 2.** \( 16 a^{0} \) **Solution:** Any non-zero number raised to the power of 0 is 1. \[ 16 a^{0} = 16 \times 1 = 16 \] **Simplified Form:** \( 16 \) --- ### **Problem 3.** \( \frac{2^{-2}}{3^{2}} \) **Solution:** First, simplify the exponents: \[ 2^{-2} = \frac{1}{2^{2}} = \frac{1}{4} \] \[ 3^{2} = 9 \] Now, divide the two: \[ \frac{2^{-2}}{3^{2}} = \frac{\frac{1}{4}}{9} = \frac{1}{4 \times 9} = \frac{1}{36} \] **Simplified Form:** \( \frac{1}{36} \) --- ### **Problem 4.** \( \frac{5}{2^{-3}} \) **Solution:** Simplify the denominator: \[ 2^{-3} = \frac{1}{2^{3}} = \frac{1}{8} \] Now, divide: \[ \frac{5}{2^{-3}} = 5 \times 2^{3} = 5 \times 8 = 40 \] **Simplified Form:** \( 40 \) --- ### **Problem 5.** \( \left(\frac{2}{3}\right)^{-3} \) **Solution:** A negative exponent indicates the reciprocal: \[ \left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^{3} = \frac{3^{3}}{2^{3}} = \frac{27}{8} \] **Simplified Form:** \( \frac{27}{8} \) --- ### **Problem 8.** \( \overline{a^{x}} \) **Solution:** The notation \( \overline{a^{x}} \) typically represents the complex conjugate of \( a^{x} \) if \( a^{x} \) is a complex number. Without additional context, it cannot be simplified further. **Simplified Form:** \( \overline{a^{x}} \) (Remains as is) --- ### **Problem 9.** \( \frac{32 p^{2}}{4 p^{8}} \) **Solution:** Simplify the coefficients and the exponents separately: \[ \frac{32}{4} = 8 \] \[ \frac{p^{2}}{p^{8}} = p^{2-8} = p^{-6} = \frac{1}{p^{6}} \] Combine them: \[ \frac{32 p^{2}}{4 p^{8}} = 8 \times \frac{1}{p^{6}} = \frac{8}{p^{6}} \] **Simplified Form:** \( \frac{8}{p^{6}} \) --- ### **Problem 10.** \( \left(2 t^{4}\right)^{3} \) **Solution:** Apply the power to both the coefficient and the variable: \[ \left(2 t^{4}\right)^{3} = 2^{3} \times \left(t^{4}\right)^{3} = 8 \times t^{12} = 8 t^{12} \] **Simplified Form:** \( 8 t^{12} \) --- ### **Additional Expressions** #### **(a) \( \left(3^{n+3}\right)^{2} \)** **Solution:** Multiply the exponents: \[ \left(3^{n+3}\right)^{2} = 3^{2(n+3)} = 3^{2n + 6} \] **Simplified Form:** \( 3^{2n + 6} \) --- #### **(b) \( 3^{n} \times 9^{n-3} \)** **Solution:** First, express 9 as a power of 3: \[ 9 = 3^{2} \] \[ 9^{n-3} = \left(3^{2}\right)^{n-3} = 3^{2(n-3)} = 3^{2n - 6} \] Now, multiply the terms with the same base: \[ 3^{n} \times 3^{2n - 6} = 3^{n + 2n - 6} = 3^{3n - 6} \] **Simplified Form:** \( 3^{3n - 6} \) --- Feel free to ask if you need further explanations or assistance with additional problems!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that exponents, or powers, have a rich historical journey? They trace back to the ancient civilizations, where they were likely used simplistically to represent large numbers for trade and commerce. The use of exponents we know today became standardized in the 16th century when mathematicians started notating them to make computations more efficient, allowing for rapid advancements in mathematics and science. Practical application of exponent rules is everywhere! If you think about it, scientific measurements often require the understanding of exponential notation, particularly when dealing with very large or small quantities, such as in physics or chemistry. If you're measuring quantities on a molecular scale (like in molar concentrations), powers of ten become essential. Master these rules, and you’ll effortlessly decode scientific equations like a pro!

preguntas relacionadas

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad