Responder
Here are the simplified forms of the given expressions:
1. \( 16 a^{0} = 16 \)
2. \( \frac{2^{-2}}{3^{2}} = \frac{1}{36} \)
3. \( \frac{5}{2^{-3}} = 40 \)
4. \( \left(\frac{2}{3}\right)^{-3} = \frac{27}{8} \)
5. \( \overline{a^{x}} = \overline{a^{x}} \) (remains as is)
6. \( \frac{32 p^{2}}{4 p^{8}} = \frac{8}{p^{6}} \)
7. \( \left(2 t^{4}\right)^{3} = 8 t^{12} \)
8. \( \left(3^{n+3}\right)^{2} = 3^{2n + 6} \)
9. \( 3^{n} \times 9^{n-3} = 3^{3n - 6} \)
Solución
Sure! Let's simplify each of the given expressions step by step.
---
### **Problem 2.** \( 16 a^{0} \)
**Solution:**
Any non-zero number raised to the power of 0 is 1.
\[
16 a^{0} = 16 \times 1 = 16
\]
**Simplified Form:** \( 16 \)
---
### **Problem 3.** \( \frac{2^{-2}}{3^{2}} \)
**Solution:**
First, simplify the exponents:
\[
2^{-2} = \frac{1}{2^{2}} = \frac{1}{4}
\]
\[
3^{2} = 9
\]
Now, divide the two:
\[
\frac{2^{-2}}{3^{2}} = \frac{\frac{1}{4}}{9} = \frac{1}{4 \times 9} = \frac{1}{36}
\]
**Simplified Form:** \( \frac{1}{36} \)
---
### **Problem 4.** \( \frac{5}{2^{-3}} \)
**Solution:**
Simplify the denominator:
\[
2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}
\]
Now, divide:
\[
\frac{5}{2^{-3}} = 5 \times 2^{3} = 5 \times 8 = 40
\]
**Simplified Form:** \( 40 \)
---
### **Problem 5.** \( \left(\frac{2}{3}\right)^{-3} \)
**Solution:**
A negative exponent indicates the reciprocal:
\[
\left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{2}\right)^{3} = \frac{3^{3}}{2^{3}} = \frac{27}{8}
\]
**Simplified Form:** \( \frac{27}{8} \)
---
### **Problem 8.** \( \overline{a^{x}} \)
**Solution:**
The notation \( \overline{a^{x}} \) typically represents the complex conjugate of \( a^{x} \) if \( a^{x} \) is a complex number. Without additional context, it cannot be simplified further.
**Simplified Form:** \( \overline{a^{x}} \) (Remains as is)
---
### **Problem 9.** \( \frac{32 p^{2}}{4 p^{8}} \)
**Solution:**
Simplify the coefficients and the exponents separately:
\[
\frac{32}{4} = 8
\]
\[
\frac{p^{2}}{p^{8}} = p^{2-8} = p^{-6} = \frac{1}{p^{6}}
\]
Combine them:
\[
\frac{32 p^{2}}{4 p^{8}} = 8 \times \frac{1}{p^{6}} = \frac{8}{p^{6}}
\]
**Simplified Form:** \( \frac{8}{p^{6}} \)
---
### **Problem 10.** \( \left(2 t^{4}\right)^{3} \)
**Solution:**
Apply the power to both the coefficient and the variable:
\[
\left(2 t^{4}\right)^{3} = 2^{3} \times \left(t^{4}\right)^{3} = 8 \times t^{12} = 8 t^{12}
\]
**Simplified Form:** \( 8 t^{12} \)
---
### **Additional Expressions**
#### **(a) \( \left(3^{n+3}\right)^{2} \)**
**Solution:**
Multiply the exponents:
\[
\left(3^{n+3}\right)^{2} = 3^{2(n+3)} = 3^{2n + 6}
\]
**Simplified Form:** \( 3^{2n + 6} \)
---
#### **(b) \( 3^{n} \times 9^{n-3} \)**
**Solution:**
First, express 9 as a power of 3:
\[
9 = 3^{2}
\]
\[
9^{n-3} = \left(3^{2}\right)^{n-3} = 3^{2(n-3)} = 3^{2n - 6}
\]
Now, multiply the terms with the same base:
\[
3^{n} \times 3^{2n - 6} = 3^{n + 2n - 6} = 3^{3n - 6}
\]
**Simplified Form:** \( 3^{3n - 6} \)
---
Feel free to ask if you need further explanations or assistance with additional problems!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución