Pregunta
upstudy study bank question image url

Find both the vector equation and the parametric equations of the line through \( (0,0,0) \) that is parallel to the line \( \mathbf{r}=\langle 3-2 t, 9+5 t, 2+3 t\rangle \), where \( t=0 \) corresponds to the given point. The vector equation is \( \langle x, y, z\rangle=\langle\square, \square+\square \)

Ask by Peterson Wood. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vector equation is \( \langle x, y, z \rangle = \langle 0, 0, 0 \rangle + t \langle -2, 5, 3 \rangle \), and the parametric equations are: \[ \begin{cases} x = -2t, \\ y = 5t, \\ z = 3t. \end{cases} \]

Solución

To find both the vector equation and the parametric equations of the line through the origin \( (0,0,0) \) that is parallel to the given line \[ \mathbf{r} = \langle 3 - 2t, 9 + 5t, 2 + 3t \rangle, \] follow these steps: ### 1. **Determine the Direction Vector** The given line can be written in the form: \[ \mathbf{r} = \mathbf{r}_0 + t \mathbf{v}, \] where: - \( \mathbf{r}_0 = \langle 3, 9, 2 \rangle \) is a point on the line, - \( \mathbf{v} = \langle -2, 5, 3 \rangle \) is the direction vector. Since the desired line is parallel to the given line, it will have the same direction vector \( \mathbf{v} = \langle -2, 5, 3 \rangle \). ### 2. **Vector Equation of the Desired Line** The vector equation of a line passing through the origin \( (0,0,0) \) with direction vector \( \mathbf{v} \) is: \[ \langle x, y, z \rangle = \langle 0, 0, 0 \rangle + t \langle -2, 5, 3 \rangle. \] Simplifying, we get: \[ \langle x, y, z \rangle = \langle -2t, 5t, 3t \rangle. \] ### 3. **Parametric Equations of the Desired Line** From the vector equation, we can extract the parametric equations by equating each component: \[ \begin{cases} x = -2t, \\ y = 5t, \\ z = 3t. \end{cases} \] Here, \( t \) is a real number parameter. ### **Summary** - **Vector Equation:** \[ \langle x, y, z \rangle = \langle 0, 0, 0 \rangle + t \langle -2, 5, 3 \rangle \quad \text{or} \quad \langle x, y, z \rangle = \langle -2t, 5t, 3t \rangle. \] - **Parametric Equations:** \[ \begin{cases} x = -2t, \\ y = 5t, \\ z = 3t. \end{cases} \] These equations define the line through the origin that is parallel to the given line. **Final Answer:** After simplifying, the vector equation is  ⟨x, y, z〉 = ⟨0, 0, 0〉 + t 〈–2, 5, 3〉 and the parametric equations are  x = –2 t,  y = 5 t,  z = 3 t.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the vector equation of the line, we start by identifying the direction vector of the given line. From the line equation \( \mathbf{r}=\langle 3-2t, 9+5t, 2+3t \rangle \), we can extract the coefficients of \( t \) to determine the direction vector, which is \( \langle -2, 5, 3 \rangle \). Since the line must pass through the point \( (0,0,0) \) and be parallel to the given line, the vector equation is: \[ \langle x, y, z \rangle = \langle 0, 0, 0 \rangle + t \langle -2, 5, 3 \rangle = \langle -2t, 5t, 3t \rangle. \] Thus, the completed vector equation is: \[ \langle x, y, z \rangle = \langle -2t, 5t, 3t \rangle. \] Next, we can derive the parametric equations by expressing each component in terms of \( t \): - \( x = -2t \) - \( y = 5t \) - \( z = 3t \) These parametric equations define the line parallel to the initial line and passing through the origin.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad