Pregunta
upstudy study bank question image url

\begin{tabular}{l} For the following factored polynomial, find all of the zeros and their multiplicities. \\ \( \qquad f(x)=(x+2)^{8}(x+7)^{7} \) \\ Select the correct answer below: \\ \( x=7 \) with multiplicity 7 , and \( x=-2 \) with multiplicity 8 \\ \( x=-7 \) with multiplicity 8 , and \( x=-2 \) with multiplicity 7 \\ \( x=-7 \) with multiplicity 7 , and \( x=2 \) with multiplicity 8 \\ \( x=7 \) with multiplicity -7 , and \( x=8 \) with multiplicity -2 \\ \( x=-7 \) with multiplicity 7 , and \( x=-2 \) with multiplicity 8 \\ \( x=7 \) with multiplicity 7 , and \( x=2 \) with multiplicity 8 \\ 8 \\ \( x=1 \) \\ \hline\end{tabular}

Ask by Mckenzie King. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeros are \( x = -7 \) with multiplicity 7 and \( x = -2 \) with multiplicity 8.

Solución

To find the zeros of the polynomial \( f(x) = (x+2)^{8}(x+7)^{7} \) and their multiplicities, we can follow these steps: 1. **Identify the factors of the polynomial**: The polynomial is factored into two parts: \( (x+2)^{8} \) and \( (x+7)^{7} \). 2. **Set each factor to zero**: - For \( (x+2)^{8} = 0 \): \[ x + 2 = 0 \implies x = -2 \] - For \( (x+7)^{7} = 0 \): \[ x + 7 = 0 \implies x = -7 \] 3. **Determine the multiplicities**: - The factor \( (x+2)^{8} \) has a zero at \( x = -2 \) with a multiplicity of 8. - The factor \( (x+7)^{7} \) has a zero at \( x = -7 \) with a multiplicity of 7. 4. **Summarize the results**: - The zeros of the polynomial are: - \( x = -2 \) with multiplicity 8 - \( x = -7 \) with multiplicity 7 Now, let's match this with the provided options: - \( x=7 \) with multiplicity 7, and \( x=-2 \) with multiplicity 8 - \( x=-7 \) with multiplicity 8, and \( x=-2 \) with multiplicity 7 - \( x=-7 \) with multiplicity 7, and \( x=2 \) with multiplicity 8 - \( x=7 \) with multiplicity -7, and \( x=8 \) with multiplicity -2 - \( x=-7 \) with multiplicity 7, and \( x=-2 \) with multiplicity 8 - \( x=7 \) with multiplicity 7, and \( x=2 \) with multiplicity 8 The correct answer is: - \( x=-7 \) with multiplicity 7, and \( x=-2 \) with multiplicity 8.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When factoring polynomials like \( f(x) = (x+2)^{8}(x+7)^{7} \), all you really need to do is set each factor equal to zero to find the zeros. For \( (x+2)^{8} = 0 \), we get the zero \( x = -2 \) with a multiplicity of 8 (meaning it touches the x-axis and bounces back). For \( (x+7)^{7} = 0 \), we get the zero \( x = -7 \) with a multiplicity of 7. So the correct answer is \( x = -2 \) with multiplicity 8, and \( x = -7 \) with multiplicity 7. Understanding zeros and their multiplicities can help you sketch the graph of a polynomial. Zeros with even multiplicities merely touch the x-axis, while those with odd multiplicities cross it. This means that in your sketch of \( f(x) \), you'll see the graph touching the x-axis at \( x = -2 \) and crossing it at \( x = -7 \)—a great way to visualize how the polynomial behaves as it moves across different x-values!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad