Pregunta
upstudy study bank question image url

Determine the vertex and direction of opening of the parabola for the following quadratic equation: \( y=x^{2}-10 x+7 \) a.) Vertex: \( (-5,82) \) Opens: Upward b.) Vertex: \( (5,-18) \) Opens: Upward c.) Vertex: \( (5,-18) \) Opens: Downward d.) Vertex: \( (-5,82) \) Opens: Downward (

Ask by Boone Chavez. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vertex is at \( (5, -18) \) and the parabola opens upward.

Solución

To determine the **vertex** and the **direction of opening** of the parabola given by the quadratic equation: \[ y = x^2 - 10x + 7 \] ### Step 1: Find the Vertex The vertex of a parabola in the form \( y = ax^2 + bx + c \) can be found using the formula: \[ \text{Vertex } \left( h, k \right) \quad \text{where} \quad h = -\frac{b}{2a}, \quad k = y(h) \] For the given equation: - \( a = 1 \) - \( b = -10 \) - \( c = 7 \) Calculate \( h \): \[ h = -\frac{-10}{2 \times 1} = \frac{10}{2} = 5 \] Now, calculate \( k \) by substituting \( x = 5 \) into the equation: \[ k = (5)^2 - 10(5) + 7 = 25 - 50 + 7 = -18 \] So, the **vertex** is \( (5, -18) \). ### Step 2: Determine the Direction of Opening The direction in which the parabola opens is determined by the coefficient \( a \): - If \( a > 0 \), the parabola **opens upward**. - If \( a < 0 \), the parabola **opens downward**. In this case, \( a = 1 \) which is positive, so the parabola **opens upward**. ### Conclusion The correct answer is: **b.) Vertex: \( (5, -18) \) Opens: Upward** **Answer:** **b.) Vertex: \( (5,-18) \)** **Opens: Upward**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the vertex of the quadratic equation \( y = x^2 - 10x + 7 \), you can use the vertex formula \( x = -\frac{b}{2a} \). Here, \( a = 1 \) and \( b = -10 \), which gives us \( x = \frac{10}{2} = 5 \). Plug this back into the equation to get \( y = (5)^2 - 10(5) + 7 = 25 - 50 + 7 = -18 \). So, the vertex is at \( (5, -18) \) and since the coefficient of \( x^2 \) is positive, it opens upward! The correct answer is: c.) Vertex: \( (5,-18) \) Opens: Upward Now, let’s keep the fun going! Did you know that parabolas have a unique property? They're symmetrical! If you were to fold the graph along the vertical line \( x = 5 \) (the axis of symmetry), both halves would perfectly align. This nifty characteristic is great for making predictions about the function's values! To further your exploration, consider graphing related quadratic equations or experimenting with different coefficients. Changing the values of \( a \), \( b \), and \( c \) in the equation can lead to a fascinating array of shapes! You might also dive into the world of conic sections, where parabolas, along with ellipses and hyperbolas, create delightful curves in mathematics!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad