Pregunta
upstudy study bank question image url

Select the correct answer. Tara and Mallory are practicing their passing at volleyball practice. Tara bumps the ball from a height of 3 feet above the ground with an initial up velocity of 12 feet/second. At the same time, Mallory serves the ball from a height of 3.25 feet above the ground with an initial upward velocity of 9 feet/second. If \( x \) represents the number of seconds since each ball is passed and \( y \) represents the height of the ball, which system of equations models the pr motion of the two balls? Recall that the acceleration due to gravity is \( \mathbf{- 3 2} \) feet/second. A. \( y=-16 x^{2}+12 x+3 \) \[ y=-16 x^{2}+9 x+3.25 \] B. \( y=-16 x^{2}+9 x-3 \) \( y=-16 x^{2}+12 x-3.25 \) c. \( y=-16 x^{2}+12 x-3 \) \( y=-16 x^{2}+9 x-3.25 \) D. \( y=-16 x^{2}+9 x+3 \) \( y=-16 x^{2}+12 x+3.25 \)

Ask by Wyatt Bob. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct system of equations is: \[ y = -16x^2 + 12x + 3 \] \[ y = -16x^2 + 9x + 3.25 \] So, the answer is **Option A**.

Solución

To model the motion of the two volleyballs, we'll use the kinematic equation for vertical motion under gravity: \[ y = -16x^2 + v_0x + y_0 \] where: - \( y \) is the height of the ball in feet, - \( x \) is the time in seconds, - \( v_0 \) is the initial upward velocity in feet/second, - \( y_0 \) is the initial height in feet, - The coefficient \(-16\) accounts for the acceleration due to gravity (\(-32\) feet/second²) divided by 2. **For Tara's Ball:** - Initial height, \( y_0 = 3 \) feet, - Initial upward velocity, \( v_0 = 12 \) feet/second. Thus, Tara's equation is: \[ y = -16x^2 + 12x + 3 \] **For Mallory's Ball:** - Initial height, \( y_0 = 3.25 \) feet, - Initial upward velocity, \( v_0 = 9 \) feet/second. Thus, Mallory's equation is: \[ y = -16x^2 + 9x + 3.25 \] Among the provided options, **Option A** accurately represents these equations. **Answer:** A #### Option A \[ y=-16 x^{2}+12 x+3 \] \[ y=-16 x^{2}+9 x+3.25 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The correct answer is A. To model the motion of the balls, we use the equations for projectile motion under gravity. For Tara's ball, starting at 3 feet with an initial upward velocity of 12 feet/second, the equation is \( y = -16x^2 + 12x + 3 \). For Mallory's ball, starting at 3.25 feet with an initial upward velocity of 9 feet/second, the equation is \( y = -16x^2 + 9x + 3.25 \). Thus, option A accurately represents the motion of both balls! Understanding how these equations are derived can greatly enhance your appreciation for physics. Both balls are subject to gravity, which acts as a constant acceleration downward, represented by the -16 in front of the \( x^2 \) term (since it’s measured in feet per second squared). So, every second, their velocities decrease because of gravity, leading to a parabolic trajectory! If you're keen on diving deeper, consider exploring the fascinating world of projectile motion through textbooks or online courses focused on physics. Concepts like initial velocity, height, and gravity make for exciting real-world applications, from sports to engineering! Websites like Khan Academy or YouTube offer great visual explanations that can clarify these concepts and make learning fun!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad