Pregunta
upstudy study bank question image url

Find a formula for the \( n \) nh term in this arithmetic sequence: \( a_{1}=28, a_{2}=21, a_{3}=14, a_{4}=7, \ldots \) \[ a_{n}=[?] n+[] \] Hint: The coefficient of \( n \) is the common difference.

Ask by Knight Rowe. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The nth term is –7 · n plus 35. Thus, \[ a_n = -7n + 35 \]

Solución

To find the formula for the \( n \)-th term of the given arithmetic sequence: \[ a_1 = 28, \ a_2 = 21, \ a_3 = 14, \ a_4 = 7, \ldots \] **Step 1: Determine the Common Difference (\( d \))** The common difference \( d \) in an arithmetic sequence is the difference between any two consecutive terms. \[ d = a_2 - a_1 = 21 - 28 = -7 \] **Step 2: Use the General Formula for an Arithmetic Sequence** The general formula for the \( n \)-th term of an arithmetic sequence is: \[ a_n = a_1 + (n - 1)d \] Substituting the known values: \[ a_n = 28 + (n - 1)(-7) \] \[ a_n = 28 - 7n + 7 \] \[ a_n = -7n + 35 \] **Final Formula:** \[ a_n = -7n + 35 \] **Verification:** Let's verify the formula with the given terms: - For \( n = 1 \): \[ a_1 = -7(1) + 35 = 28 \] - For \( n = 2 \): \[ a_2 = -7(2) + 35 = 21 \] - For \( n = 3 \): \[ a_3 = -7(3) + 35 = 14 \] - For \( n = 4 \): \[ a_4 = -7(4) + 35 = 7 \] All terms match the given sequence. **Answer:** After simplifying, the nth term is –7 · n plus 35. Thus, aₙ = −7 n + 35

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The first thing to notice about this sequence is that it is decreasing by a constant value. To find the common difference, we can subtract any term from the term that follows it: \( 21 - 28 = -7 \), \( 14 - 21 = -7 \), and \( 7 - 14 = -7 \). So, the common difference is \(-7\). The formula for the \( n \)-th term in an arithmetic sequence can be expressed as: \[ a_n = a_1 + (n-1)d \] Substituting \( a_1 = 28 \) and \( d = -7 \): \[ a_n = 28 + (n-1)(-7) \] This simplifies to: \[ a_n = 28 - 7(n-1) = 28 - 7n + 7 = 35 - 7n \] Thus, the formula for the \( n \)-th term is: \[ a_n = -7n + 35 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad