Pregunta
upstudy study bank question image url

Show that the sum of two consecutiv odd numbers is an even number.

Ask by Hodges Campos. in South Africa
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of two consecutive odd numbers is always even.

Solución

To show that the sum of two consecutive odd numbers is an even number, we can follow these steps: 1. **Define the odd numbers**: Let the first odd number be represented as \( n \). Since odd numbers can be expressed in the form of \( 2k + 1 \) (where \( k \) is an integer), we can write: - First odd number: \( n = 2k + 1 \) - Second consecutive odd number: \( n + 2 = 2k + 3 \) 2. **Calculate the sum**: Now, we will find the sum of these two consecutive odd numbers: \[ \text{Sum} = n + (n + 2) = (2k + 1) + (2k + 3) \] 3. **Simplify the expression**: Simplifying the sum gives: \[ \text{Sum} = 2k + 1 + 2k + 3 = 4k + 4 \] 4. **Factor the result**: We can factor out a 4 from the expression: \[ \text{Sum} = 4(k + 1) \] 5. **Conclusion**: Since \( 4(k + 1) \) is clearly a multiple of 4, it is also an even number (as any multiple of 2 is even). Therefore, we have shown that the sum of two consecutive odd numbers is an even number. Thus, the statement is proven.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's represent two consecutive odd numbers. We can do this by expressing the first odd number as \(n\) (where \(n\) is an odd number), and the next consecutive odd number would then be \(n + 2\). When we add these two odd numbers together, we get: \[ n + (n + 2) = 2n + 2 = 2(n + 1) \] Since the sum \(2(n + 1)\) can be factored to show that it is divisible by 2, which indicates it's an even number, we've shown that the sum of two consecutive odd numbers is indeed an even number! Isn’t it interesting that odd numbers can create even harmony? Just as they dance around the number line, their sums always land neatly on the even spots!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad