Pregunta
upstudy study bank question image url

Suson has R1 000 that she invests in an occount that pays \( 7.5 \% \) interest compounded yearly. How much money does Susan have at the end of 5 ye

Ask by Floyd Hanson. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Susan will have approximately R1,435.63 at the end of 5 years.

Solución

To find out how much money Susan has at the end of 5 years with an investment of R1,000 and an annual interest rate of 7.5% compounded yearly, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] Where: - \( A \) is the amount of money at the end of the investment period - \( P \) is the principal amount (initial investment) - \( r \) is the annual interest rate - \( n \) is the number of years Given: - \( P = R1,000 \) - \( r = 7.5\% \) - \( n = 5 \) years Substitute the values into the formula: \[ A = 1000 \left( 1 + \frac{7.5}{100} \right)^5 \] Now, we can calculate the amount of money Susan has at the end of 5 years. Calculate the value by following steps: - step0: Calculate: \(1000\left(1+\frac{7.5}{100}\right)^{5}\) - step1: Divide the terms: \(1000\left(1+\frac{3}{40}\right)^{5}\) - step2: Add the numbers: \(1000\left(\frac{43}{40}\right)^{5}\) - step3: Simplify: \(1000\times \frac{43^{5}}{40^{5}}\) - step4: Rewrite the expression: \(40\times 25\times \frac{43^{5}}{40^{5}}\) - step5: Reduce the numbers: \(25\times \frac{43^{5}}{40^{4}}\) - step6: Rewrite the expression: \(25\times \frac{43^{5}}{5^{4}\times 8^{4}}\) - step7: Rewrite the expression: \(5^{2}\times \frac{43^{5}}{5^{4}\times 8^{4}}\) - step8: Reduce the numbers: \(1\times \frac{43^{5}}{5^{2}\times 8^{4}}\) - step9: Multiply: \(\frac{43^{5}}{320^{2}}\) Susan will have approximately R1,435.63 at the end of 5 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate how much money Suson will have at the end of 5 years with her compounded interest investment, you can use the formula for compound interest: \[ A = P(1 + r)^n \] Here, \( A \) is the amount of money accumulated after n years, including interest. \( P \) is the principal amount (the initial investment), \( r \) is the annual interest rate (decimal), and \( n \) is the number of years the money is invested. For Suson's investment: - \( P = R1,000 \) - \( r = 0.075 \) (which is \( 7.5\% \)) - \( n = 5 \) Plugging in these values: \[ A = 1000(1 + 0.075)^5 \] \[ A = 1000(1.075)^5 \] \[ A \approx 1000 \times 1.441 \] \[ A \approx R1,441 \] So, at the end of 5 years, Suson will have approximately R1,441. If you’re looking to invest, it’s always good to explore options for reinvesting your interest to maximize your compounding effect. For Suson, keeping her money in an account with a competitive interest rate will make a significant difference over time—a great way to grow her savings without lifting a finger! Many people make the common mistake of withdrawing interest earnings too soon or failing to reinvest them. Even small amounts can add up dramatically over the years if left to compound, so think long-term and let that money work for you!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad