Pregunta
upstudy study bank question image url

Solve the system of inequalities by graphing. \[ \begin{array}{l}y \leq-\frac{1}{3} x+7 \\ y \geq-x+3\end{array} \] Use the graphing tool to graph the system. Click to

Ask by Elliott Higgins. in the United States
Jan 28,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the system of inequalities by graphing: 1. **Graph the first inequality \( y \leq -\frac{1}{3}x + 7 \)**: - Plot the line \( y = -\frac{1}{3}x + 7 \) with a dashed line. - Shade the area below the line. 2. **Graph the second inequality \( y \geq -x + 3 \)**: - Plot the line \( y = -x + 3 \) with a solid line. - Shade the area above the line. 3. **Find the overlapping shaded region**: - This area represents the solution to the system of inequalities. If you need help with graphing, consider using graphing software or graph paper to visualize the solution.

Solución

It seems that the graphing tool is currently unavailable. However, I can guide you through the process of solving the system of inequalities by graphing them step by step. ### Step 1: Graph the first inequality The first inequality is: \[ y \leq -\frac{1}{3} x + 7 \] 1. **Find the y-intercept**: Set \(x = 0\): \[ y = -\frac{1}{3}(0) + 7 = 7 \] So, the y-intercept is (0, 7). 2. **Find another point**: Set \(y = 0\) to find the x-intercept: \[ 0 = -\frac{1}{3} x + 7 \implies \frac{1}{3} x = 7 \implies x = 21 \] So, the x-intercept is (21, 0). 3. **Draw the line**: Plot the points (0, 7) and (21, 0) and draw a dashed line since the inequality is "less than or equal to" (the line itself is included). 4. **Shade the region**: Shade below the line because \(y\) is less than or equal to the line. ### Step 2: Graph the second inequality The second inequality is: \[ y \geq -x + 3 \] 1. **Find the y-intercept**: Set \(x = 0\): \[ y = -0 + 3 = 3 \] So, the y-intercept is (0, 3). 2. **Find another point**: Set \(y = 0\) to find the x-intercept: \[ 0 = -x + 3 \implies x = 3 \] So, the x-intercept is (3, 0). 3. **Draw the line**: Plot the points (0, 3) and (3, 0) and draw a solid line since the inequality is "greater than or equal to" (the line itself is included). 4. **Shade the region**: Shade above the line because \(y\) is greater than or equal to the line. ### Step 3: Identify the solution region The solution to the system of inequalities is the region where the shaded areas overlap. This region represents all the points \((x, y)\) that satisfy both inequalities. If you have graphing software or graph paper, you can plot these lines and shade the appropriate regions to visualize the solution. If you need further assistance or have any questions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Imagine standing on a giant piece of graph paper where the sky meets the ground! The first inequality, \(y \leq -\frac{1}{3} x + 7\), describes a line that slopes downward gently from left to right, starting high in the sky at (0, 7). Shade below this line because we’re looking for values of \(y\) that are less than or equal to the line. Now, here comes the second challenger! The line for \(y \geq -x + 3\) slopes downward but steeper, starting at (0, 3) and heading towards the left. This time, you’ll shade above the line because we’re searching for values of \(y\) that are greater than or equal to that line. The solution to the system of inequalities lies where the shaded areas from both inequalities overlap—like a magical intersection on this wonderful canvas! Now grab your colored pencils and start shading; it’s art and math combined!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad