Pregunta
upstudy study bank question image url

Question 16 Find the directional derivative of the scalar function of \( (x, y, z)=x y z \) in the direction of the outer normal to the surface \( z=x y \) at the point \( (3,1,3) \).

Ask by Tyler Wells. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The directional derivative of \( f(x, y, z) = xyz \) in the direction of the outer normal to the surface \( z = xy \) at the point \( (3, 1, 3) \) is \( -\frac{27}{\sqrt{11}} \).

Solución

To find the **directional derivative** of the scalar function \( f(x, y, z) = xyz \) in the direction of the **outer normal** to the surface \( z = xy \) at the point \( (3, 1, 3) \), follow these steps: ### 1. Compute the Gradient of \( f \) The gradient of \( f \) is given by: \[ \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \] For \( f(x, y, z) = xyz \): \[ \nabla f = \left( yz, xz, xy \right) \] At the point \( (3, 1, 3) \): \[ \nabla f(3, 1, 3) = \left(1 \cdot 3, 3 \cdot 3, 3 \cdot 1\right) = (3, 9, 3) \] ### 2. Determine the Outer Normal to the Surface \( z = xy \) First, rewrite the surface equation as \( F(x, y, z) = z - xy = 0 \). The normal vector to the surface is given by the gradient of \( F \): \[ \nabla F = \left( -y, -x, 1 \right) \] At the point \( (3, 1, 3) \): \[ \mathbf{n} = \nabla F(3, 1, 3) = (-1, -3, 1) \] To get the **unit normal vector**, normalize \( \mathbf{n} \): \[ \| \mathbf{n} \| = \sqrt{(-1)^2 + (-3)^2 + 1^2} = \sqrt{1 + 9 + 1} = \sqrt{11} \] \[ \mathbf{u} = \frac{\mathbf{n}}{\| \mathbf{n} \|} = \left( \frac{-1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right) \] ### 3. Compute the Directional Derivative The directional derivative of \( f \) in the direction of \( \mathbf{u} \) is: \[ D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} \] Substituting the values: \[ D_{\mathbf{u}} f = (3, 9, 3) \cdot \left( \frac{-1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right) \] \[ D_{\mathbf{u}} f = \frac{3 \cdot (-1) + 9 \cdot (-3) + 3 \cdot 1}{\sqrt{11}} = \frac{-3 - 27 + 3}{\sqrt{11}} = \frac{-27}{\sqrt{11}} \] ### Final Answer \[ D_{\mathbf{u}} f = \frac{-27}{\sqrt{11}} \] **Answer:** Its directional derivative is –27 divided by the square root of 11, that is D = −27 ⁄ √11

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the directional derivative of the function \( f(x, y, z) = xyz \) in the direction of the outer normal to the surface \( z = xy \) at the point \( (3, 1, 3) \), we first need to determine the normal vector to the surface. 1. The surface \( z = xy \) can be expressed in the form \( g(x, y, z) = z - xy = 0 \). To find the normal vector \(\nabla g\): \[ g_x = -y, \quad g_y = -x, \quad g_z = 1 \] Therefore, the gradient \(\nabla g\) is: \[ \nabla g = (-y, -x, 1) \] At the point \( (3, 1, 3) \): \[ \nabla g(3, 1, 3) = (-1, -3, 1) \] 2. Now, we find the gradient of the function \( f(x, y, z) \): \[ \nabla f = (yz, xz, xy) \] Evaluating this at the point \( (3, 1, 3) \): \[ \nabla f(3, 1, 3) = (1 \cdot 3, 3 \cdot 3, 3 \cdot 1) = (3, 9, 3) \] 3. The magnitude of the normal vector \(\nabla g\) is: \[ \|\nabla g\| = \sqrt{(-1)^2 + (-3)^2 + 1^2} = \sqrt{1 + 9 + 1} = \sqrt{11} \] 4. The unit normal vector \( \hat{n} \): \[ \hat{n} = \frac{1}{\sqrt{11}}(-1, -3, 1) \] 5. The directional derivative \( D_{\hat{n}} f = \nabla f \cdot \hat{n} \): \[ D_{\hat{n}} f = (3, 9, 3) \cdot \left(\frac{-1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right) \] \[ = \frac{1}{\sqrt{11}} \left( 3(-1) + 9(-3) + 3(1) \right) = \frac{1}{\sqrt{11}} \left( -3 - 27 + 3 \right) = \frac{-27}{\sqrt{11}} \] So, the directional derivative of the scalar function \( f \) in the direction of the outer normal to the surface \( z = xy \) at the point \( (3, 1, 3) \) is \( \frac{-27}{\sqrt{11}} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad