Question 16 Find the directional derivative of the scalar function of \( (x, y, z)=x y z \) in the direction of the outer normal to the surface \( z=x y \) at the point \( (3,1,3) \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the directional derivative of the function \( f(x, y, z) = xyz \) in the direction of the outer normal to the surface \( z = xy \) at the point \( (3, 1, 3) \), we first need to determine the normal vector to the surface. 1. The surface \( z = xy \) can be expressed in the form \( g(x, y, z) = z - xy = 0 \). To find the normal vector \(\nabla g\): \[ g_x = -y, \quad g_y = -x, \quad g_z = 1 \] Therefore, the gradient \(\nabla g\) is: \[ \nabla g = (-y, -x, 1) \] At the point \( (3, 1, 3) \): \[ \nabla g(3, 1, 3) = (-1, -3, 1) \] 2. Now, we find the gradient of the function \( f(x, y, z) \): \[ \nabla f = (yz, xz, xy) \] Evaluating this at the point \( (3, 1, 3) \): \[ \nabla f(3, 1, 3) = (1 \cdot 3, 3 \cdot 3, 3 \cdot 1) = (3, 9, 3) \] 3. The magnitude of the normal vector \(\nabla g\) is: \[ \|\nabla g\| = \sqrt{(-1)^2 + (-3)^2 + 1^2} = \sqrt{1 + 9 + 1} = \sqrt{11} \] 4. The unit normal vector \( \hat{n} \): \[ \hat{n} = \frac{1}{\sqrt{11}}(-1, -3, 1) \] 5. The directional derivative \( D_{\hat{n}} f = \nabla f \cdot \hat{n} \): \[ D_{\hat{n}} f = (3, 9, 3) \cdot \left(\frac{-1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}, \frac{1}{\sqrt{11}} \right) \] \[ = \frac{1}{\sqrt{11}} \left( 3(-1) + 9(-3) + 3(1) \right) = \frac{1}{\sqrt{11}} \left( -3 - 27 + 3 \right) = \frac{-27}{\sqrt{11}} \] So, the directional derivative of the scalar function \( f \) in the direction of the outer normal to the surface \( z = xy \) at the point \( (3, 1, 3) \) is \( \frac{-27}{\sqrt{11}} \).