In the product \( (3 x-2)(x+4)=3 x^{2}+10 x-8 \), the polynomials \( (3 x-2) \) and \( (x+4) \) are called \( \square \) of the polynomial \( 3 x^{2}+10 x-8 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
In the product \( (3 x-2)(x+4)=3 x^{2}+10 x-8 \), the polynomials \( (3 x-2) \) and \( (x+4) \) are called **factors** of the polynomial \( 3 x^{2}+10 x-8 \). Factors are the expressions that, when multiplied together, yield a specific polynomial. To check if these expressions are indeed factors, you can perform polynomial multiplication. Multiply \( 3x \) by \( x \) and \( 4 \), and don’t forget to combine like terms after distributing. Factors play a crucial role in simplifying complex polynomials and solving equations!