Find the roots and the vertex of the quadratic on a calculator. Round all values to 3 decimal places (if necessary). \[ y=x^{2}+10 x-96 \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the roots of the quadratic equation \( y = x^{2} + 10x - 96 \), you can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] In this case, \( a = 1 \), \( b = 10 \), and \( c = -96 \). Plugging these values into the formula, you get: \[ x = \frac{-10 \pm \sqrt{(10)^2 - 4(1)(-96)}}{2(1)} = \frac{-10 \pm \sqrt{100 + 384}}{2} = \frac{-10 \pm \sqrt{484}}{2} = \frac{-10 \pm 22}{2} \] Calculating both roots: \[ x_1 = \frac{12}{2} = 6 \quad \text{and} \quad x_2 = \frac{-32}{2} = -16 \] So the roots are \( x = 6 \) and \( x = -16 \). Now, to find the vertex, use the formula \( x = -\frac{b}{2a} \): \[ x = -\frac{10}{2 \cdot 1} = -5 \] Now substitute \( x = -5 \) back into the equation to find the \( y \)-coordinate: \[ y = (-5)^{2} + 10(-5) - 96 = 25 - 50 - 96 = -121 \] Thus, the vertex is \( (-5, -121) \). Final results: - Roots: \( (6, 0) \) and \( (-16, 0) \) - Vertex: \( (-5, -121) \)