Pregunta
upstudy study bank question image url

Waiting period. Jamal is waiting to be a millionaire. He wants to know how long he must wait if a. he invests \( \$ 27,523.17 \) at \( 20 \% \) today? b. he invests \( \$ 54,955.85 \) at \( 13 \% \) today? c. he invests \( \$ 126,545.56 \) at \( 11 \% \) today? d. he invests \( \$ 284,998.58 \) at \( 7 \% \) today? a. How long will Jamal have to wait to become a millionaire if he invests \( \$ 27,523.17 \) at \( 20 \% \) today? \( \square \) years (Round to the nearest whole number.)

Ask by Barber Pierce. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Jamal will need to wait approximately 20 years to become a millionaire with his investment.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To determine how long Jamal must wait to become a millionaire with his investments, we can use the formula for compound interest, which is: \[ A = P(1 + r)^t \] where: - \( A \) is the amount of money accumulated after \( t \) years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the number of years the money is invested. We're looking to solve for \( t \), which can be done by rearranging the formula to: \[ t = \frac{\log(A/P)}{\log(1 + r)} \] Now, let’s calculate the waiting periods for each investment: ### a. \$27,523.17 at 20% 1. \( P = 27,523.17 \) 2. \( A = 1,000,000 \) (to be a millionaire) 3. \( r = 0.20 \) \[ t = \frac{\log(1,000,000 / 27,523.17)}{\log(1 + 0.20)} \approx \frac{\log(36.4)}{\log(1.20)} \approx \frac{1.5607}{0.07918} \approx 19.7 \] Rounded to the nearest whole number, Jamal will have to wait approximately **20 years**. ### b. \$54,955.85 at 13% 1. \( P = 54,955.85 \) 2. \( A = 1,000,000 \) 3. \( r = 0.13 \) \[ t = \frac{\log(1,000,000 / 54,955.85)}{\log(1 + 0.13)} \approx \frac{\log(18.2)}{\log(1.13)} \approx \frac{1.2608}{0.05407} \approx 23.3 \] Rounded to the nearest whole number, it would take approximately **23 years**. ### c. \$126,545.56 at 11% 1. \( P = 126,545.56 \) 2. \( A = 1,000,000 \) 3. \( r = 0.11 \) \[ t = \frac{\log(1,000,000 / 126,545.56)}{\log(1 + 0.11)} \approx \frac{\log(7.9)}{\log(1.11)} \approx \frac{0.8962}{0.04139} \approx 21.7 \] Rounded to the nearest whole number, he will wait about **22 years**. ### d. \$284,998.58 at 7% 1. \( P = 284,998.58 \) 2. \( A = 1,000,000 \) 3. \( r = 0.07 \) \[ t = \frac{\log(1,000,000 / 284,998.58)}{\log(1 + 0.07)} \approx \frac{\log(3.5)}{\log(1.07)} \approx \frac{0.5441}{0.02963} \approx 18.4 \] Rounded to the nearest whole number, this means he’ll have to wait approximately **18 years**. So here's a quick summary: - 20 years for \$27,523.17 at 20% - 23 years for \$54,955.85 at 13% - 22 years for \$126,545.56 at 11% - 18 years for \$284,998.58 at 7%. Time to start investing and watching that money grow!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad