Pregunta
upstudy study bank question image url

Relations \& Functions 1. A function \( f: R_{+} \rightarrow R \) (where \( R_{+} \)is the set of all non-negative real numbers) defined by \( f(x)=4 x+3 \) is : (2024) (A) one-one but not onto (B) onto but not one-one (C) both one-one and onto (D) neither one-one nor onto Ans. (A) one-one but not onto

Ask by Wagner Reyes. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = 4x + 3 \) is **one-one** but **not onto**.

Solución

Let's analyze the function \( f: \mathbb{R}_{+} \rightarrow \mathbb{R} \) defined by \( f(x) = 4x + 3 \), where \( \mathbb{R}_{+} \) represents the set of all non-negative real numbers (\( x \geq 0 \)). ### 1. **One-One (Injective)** A function is **one-one** or **injective** if distinct inputs produce distinct outputs. - **For \( f(x) = 4x + 3 \):** - Suppose \( f(a) = f(b) \). - Then, \( 4a + 3 = 4b + 3 \). - Subtracting 3 from both sides: \( 4a = 4b \). - Dividing both sides by 4: \( a = b \). Since \( a = b \), the function \( f \) is **injective**. ### 2. **Onto (Surjective)** A function is **onto** or **surjective** if every element in the codomain has a pre-image in the domain. - **Codomain:** \( \mathbb{R} \) (all real numbers). - **Domain:** \( \mathbb{R}_{+} \) (all non-negative real numbers). - **For \( f(x) = 4x + 3 \):** - The smallest value \( f(x) \) can take is when \( x = 0 \): \( f(0) = 3 \). - As \( x \) increases, \( f(x) \) increases without bound. - Therefore, \( f(\mathbb{R}_{+}) = [3, \infty) \). Since the codomain \( \mathbb{R} \) includes all real numbers below 3 as well, there are real numbers (specifically, all \( y < 3 \)) that **do not** have a corresponding \( x \) in \( \mathbb{R}_{+} \) such that \( f(x) = y \). Thus, the function \( f \) is **not surjective**. ### **Conclusion** - **Injective:** Yes - **Surjective:** No Therefore, the correct answer is: **(A) one-one but not onto**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The function \( f(x) = 4x + 3 \) is indeed one-one, meaning that every input corresponds to a unique output. If you were to pick two different non-negative real numbers, their outputs would also be different, confirming it's one-one. However, the outputs can never cover all real numbers, since it starts at 3 and stretches infinitely upward; hence, it cannot be onto. In practical terms, understanding whether a function is one-one or onto is crucial in fields like computer science and economics. For instance, in algorithms, ensuring unique outputs for inputs can lead to more efficient data processing. Similarly, in market analysis, a function that models demand must appropriately map product price changes to consumer quantity demanded to reflect real-world scenarios accurately!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad