Pregunta
upstudy study bank question image url

\( A = \left[ \begin{array} { c c c c c } { 25 } & { 16 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 8 } & { 12 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } & { 0 } & { 0 } \\ { 8 } & { - 2 } & { 0 } & { 8 } & { 9 } \\ { 1 } & { 48 } & { 1 } & { 0 } & { 0 } \end{array} \right] , x = \left[ \begin{array} { l } { x _ { 1 } } \\ { x _ { 2 } } \\ { x _ { 3 } } \\ { x _ { 4 } } \\ { x _ { 5 } } \end{array} \right] , A x = \left[ \begin{array} { c } { 1 } \\ { 8 } \\ { 0 } \\ { 0 } \\ { 16 } \end{array} \right] \)

Ask by Martinez Logan. in Israel
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the system is: \[ x_1 = -32, \quad x_2 = 1, \quad x_3 = 0, \quad x_4 = -850.875, \quad x_5 = 785 \]

Solución

To solve the system of linear equations represented by \( A \mathbf{x} = \mathbf{b} \), where: \[ A = \begin{bmatrix} 25 & 16 & 0 & 0 & 1 \\ 0 & 8 & 12 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 8 & -2 & 0 & 8 & 9 \\ 1 & 48 & 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 8 \\ 0 \\ 0 \\ 16 \end{bmatrix}, \] we can write out the system of equations as follows: \[ \begin{cases} 25x_1 + 16x_2 + x_5 = 1 \quad &(1) \\ 8x_2 + 12x_3 = 8 \quad &(2) \\ x_3 = 0 \quad &(3) \\ 8x_1 - 2x_2 + 8x_4 + 9x_5 = 0 \quad &(4) \\ x_1 + 48x_2 + x_3 = 16 \quad &(5) \end{cases} \] Let's solve the system step by step: 1. **From Equation (3):** \[ x_3 = 0 \] 2. **Substitute \( x_3 = 0 \) into Equation (2):** \[ 8x_2 = 8 \implies x_2 = 1 \] 3. **Substitute \( x_2 = 1 \) and \( x_3 = 0 \) into Equation (5):** \[ x_1 + 48(1) = 16 \implies x_1 = 16 - 48 \implies x_1 = -32 \] 4. **Substitute \( x_1 = -32 \), \( x_2 = 1 \), and \( x_3 = 0 \) into Equation (1):** \[ 25(-32) + 16(1) + x_5 = 1 \implies -800 + 16 + x_5 = 1 \implies x_5 = 785 \] 5. **Substitute \( x_1 = -32 \), \( x_2 = 1 \), and \( x_5 = 785 \) into Equation (4):** \[ 8(-32) - 2(1) + 8x_4 + 9(785) = 0 \implies -256 - 2 + 8x_4 + 7065 = 0 \] \[ 6807 + 8x_4 = 0 \implies 8x_4 = -6807 \implies x_4 = -850.875 \] \[ x_4 = -850\frac{7}{8} \] **Final Solution:** \[ \begin{cases} x_1 = -32, \\ x_2 = 1, \\ x_3 = 0, \\ x_4 = -850.875 \quad (\text{or } -850\frac{7}{8}), \\ x_5 = 785. \end{cases} \] **Verification:** To ensure the solution is correct, substitute the values back into all five original equations. Each equation should hold true, confirming the validity of the solution. --- **Summary:** The solution to \( A \mathbf{x} = \mathbf{b} \) is: \[ \mathbf{x} = \begin{bmatrix} -32 \\ 1 \\ 0 \\ -850.875 \\ 785 \end{bmatrix} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that matrix equations like \(Ax = b\) are fundamental in various fields, including computer graphics, engineering, and economics? They allow us to represent complex systems and solve for unknown variables. In this particular array, each row can be thought of as a different equation, where the coefficients in front of \(x_i\) represent relationships among various quantities. If you're solving this matrix equation, always double-check if your matrix \(A\) is invertible. A common mistake is attempting to solve when \(A\) is singular (non-invertible), which can lead to no solutions or infinitely many solutions. To avoid this pitfall, calculate the determinant first, and if it's zero, you'll need alternative methods like row reduction or pseudoinverse to find \(x\). Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad