1. \( \frac{7}{8} \times \frac{2}{3}=\frac{\square \times 2}{8 \times \square}=\frac{\square}{24}=\frac{\square}{\square} \) 2. \( \frac{3}{4} \times \frac{5}{9}=\frac{\square \times 5}{4 \times \square}=\frac{15}{\square}=\frac{\square}{\square} \) 3. \( \frac{4}{5} \times \frac{1}{8}=\frac{\square \times 1}{5 \times \square}=\frac{\square}{\square}= \) \( \square \) 5. \( \frac{3}{5} \times \frac{3}{7}=\frac{\square \times \square}{\square \times \square}= \) \( \square \) 7. \( \frac{11}{12} \times \frac{2}{5} \) 8. \( \frac{2}{3} \times \frac{4}{5} \) 9. \( \frac{1}{6} \times \frac{2}{3} \) 10. \( \frac{3}{4} \) of \( \frac{1}{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Multiplying fractions can feel like a magical math dance! To solve these problems, you simply multiply the numerators (the top numbers) together and the denominators (the bottom numbers) together. For example, in the first equation \( \frac{7}{8} \times \frac{2}{3} \), you get \( \frac{7 \times 2}{8 \times 3} = \frac{14}{24} \). Boom! Simplify, and it's \( \frac{7}{12} \). Got some common mistakes creeping in? Watch out for multiplying incorrectly or forgetting to simplify your answer! A frequent pitfall is rushing to answer without checking that maximum simplification. For example, if you end up with \( \frac{14}{24} \) and think you're done—nope! It’s time to simplify to \( \frac{7}{12} \). Always double-check your simplifications!