Pregunta
\( \mathrm{J}(-7,7) \) Write an algebraic representation for the reflec
Ask by Lyons Wade. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
To reflect the point \( J(-7, 7) \) across an axis or line, use the following rules:
1. **Across the x-axis:** \( J' = (-7, -7) \)
2. **Across the y-axis:** \( J' = (7, 7) \)
3. **Across the line \( y = x \):** \( J' = (7, -7) \)
4. **Across the origin:** \( J' = (7, -7) \)
Choose the rule that matches the reflection you want.
Solución
To create an algebraic representation for the reflection of the point \( J(-7, 7) \), we first need to specify **across which axis or line** the reflection is taking place. Common reflections include:
1. **Reflection Across the x-axis:**
- **Rule:** \( (x, y) \rightarrow (x, -y) \)
- **Application to \( J(-7, 7) \):**
\[
J' = (-7, -7)
\]
- **Explanation:** Only the y-coordinate changes its sign, flipping the point over the x-axis.
2. **Reflection Across the y-axis:**
- **Rule:** \( (x, y) \rightarrow (-x, y) \)
- **Application to \( J(-7, 7) \):**
\[
J' = (7, 7)
\]
- **Explanation:** Only the x-coordinate changes its sign, flipping the point over the y-axis.
3. **Reflection Across the Line \( y = x \):**
- **Rule:** \( (x, y) \rightarrow (y, x) \)
- **Application to \( J(-7, 7) \):**
\[
J' = (7, -7)
\]
- **Explanation:** The x and y coordinates are swapped, reflecting the point over the line \( y = x \).
4. **Reflection Across the Origin (Point Reflection):**
- **Rule:** \( (x, y) \rightarrow (-x, -y) \)
- **Application to \( J(-7, 7) \):**
\[
J' = (7, -7)
\]
- **Explanation:** Both coordinates change their signs, effectively rotating the point 180 degrees around the origin.
**Example: Reflection Across the x-axis**
Given the point \( J(-7, 7) \), reflecting it across the x-axis:
\[
J' = (-7, -7)
\]
**Algebraic Representation:**
\[
(x, y) \rightarrow (x, -y)
\]
This represents the general rule for reflecting any point across the x-axis.
---
**Choose the appropriate reflection rule based on the desired axis or line of reflection.**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To reflect the point \( J(-7, 7) \) over the x-axis, you simply change the sign of the y-coordinate. The new point would then be \( J'(-7, -7) \). If you want to reflect over the y-axis, you change the sign of the x-coordinate, resulting in the point \( J''(7, 7) \). Both reflections will give you coordinates that are symmetrically opposite to the original point in their respective axes.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium