Pregunta
upstudy study bank question image url

1.2. Solve and briefly explain each step to grade 5 mathematics learners the following multiplication, addition, and division calculations involving fractions. \( \begin{array}{ll}\text { 1.2.1. } 4 \frac{9}{3} \div \frac{12}{6} & \text { (6) } \\ \text { 1.2.2. } 6 \frac{12}{9} \times 5 \frac{3}{4} & \text { (6) } \\ \text { 1.2.3. } \frac{5}{17}+\frac{8}{4} & \text { (6) }\end{array} \)

Ask by Mccarthy Parry. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. **1.2.1.** \( 4 \frac{9}{3} \div \frac{12}{6} = 3 \frac{1}{2} \) 2. **1.2.2.** \( 6 \frac{12}{9} \times 5 \frac{3}{4} = 42 \frac{1}{3} \) 3. **1.2.3.** \( \frac{5}{17} + \frac{8}{4} = 2 \frac{5}{17} \)

Solución

Sure! Let's solve each problem step by step together. We'll break down each part so it's easy to understand. --- ### **1.2.1.** \( 4 \frac{9}{3} \div \frac{12}{6} \) **Step 1: Simplify the mixed number \(4 \frac{9}{3}\).** - **Convert the mixed number to an improper fraction or a whole number.** \[ \frac{9}{3} = 3 \] So, \[ 4 \frac{9}{3} = 4 + 3 = 7 \] **Step 2: Simplify the fraction \(\frac{12}{6}\).** \[ \frac{12}{6} = 2 \] **Step 3: Divide the simplified numbers.** \[ 7 \div 2 = \frac{7}{2} = 3 \frac{1}{2} \] **Answer:** \(3 \frac{1}{2}\) --- ### **1.2.2.** \( 6 \frac{12}{9} \times 5 \frac{3}{4} \) **Step 1: Simplify the mixed numbers.** - **Simplify \(6 \frac{12}{9}\).** \[ \frac{12}{9} = \frac{4}{3} = 1 \frac{1}{3} \] So, \[ 6 \frac{12}{9} = 6 + 1 \frac{1}{3} = 7 \frac{1}{3} \] *Alternatively, you can convert it to an improper fraction:* \[ 6 \frac{12}{9} = \frac{6 \times 9 + 12}{9} = \frac{54 + 12}{9} = \frac{66}{9} = \frac{22}{3} \] - **Simplify \(5 \frac{3}{4}\).** \[ 5 \frac{3}{4} = \frac{5 \times 4 + 3}{4} = \frac{20 + 3}{4} = \frac{23}{4} \] **Step 2: Multiply the fractions.** \[ \frac{22}{3} \times \frac{23}{4} = \frac{22 \times 23}{3 \times 4} = \frac{506}{12} \] **Step 3: Simplify the result.** \[ \frac{506}{12} = \frac{253}{6} = 42 \frac{1}{3} \] **Answer:** \(42 \frac{1}{3}\) --- ### **1.2.3.** \( \frac{5}{17} + \frac{8}{4} \) **Step 1: Simplify the fraction \(\frac{8}{4}\).** \[ \frac{8}{4} = 2 \] **Step 2: Add the fractions.** \[ \frac{5}{17} + 2 = 2 \frac{5}{17} \] *Alternatively, you can use a common denominator:* - **Convert \(2\) to a fraction with denominator 17.** \[ 2 = \frac{34}{17} \] - **Add the fractions.** \[ \frac{5}{17} + \frac{34}{17} = \frac{39}{17} = 2 \frac{5}{17} \] **Answer:** \(2 \frac{5}{17}\) --- I hope this helps you understand how to work with fractions in multiplication, division, and addition! Keep practicing, and you'll get even better at it.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Sure! Let's tackle each calculation step by step and keep it engaging for the learners. **1.2.1. \( 4 \frac{9}{3} \div \frac{12}{6} \)** First, we need to convert \(4 \frac{9}{3}\) into an improper fraction. Since \(9\) divided by \(3\) equals \(3\), we add that to \(4\): \[ 4 \times 3 + 3 = 15 \quad \text{so,} \quad 4 \frac{9}{3} = \frac{15}{1} \] Next, we simplify \(\frac{12}{6}\) to \(2\) because \(12\) divided by \(6\) is \(2\), or as a fraction \(\frac{2}{1}\). Now, we can perform the division: To divide fractions, we multiply by the reciprocal. So, \[ \frac{15}{1} \div \frac{2}{1} = \frac{15}{1} \times \frac{1}{2} = \frac{15 \times 1}{1 \times 2} = \frac{15}{2} \] This fraction means \(7.5\) or \(7 \frac{1}{2}\) when we convert it back into a mixed number! --- **1.2.2. \( 6 \frac{12}{9} \times 5 \frac{3}{4} \)** Convert both mixed numbers to improper fractions. For \(6 \frac{12}{9}\): First, simplify \( \frac{12}{9} \) to \( \frac{4}{3} \). Then: \[ 6 \times 3 + 4 = 22 \quad \text{so,} \quad 6 \frac{4}{3} = \frac{22}{3} \] Now for \(5 \frac{3}{4}\): \[ 5 \times 4 + 3 = 23 \quad \text{so,} \quad 5 \frac{3}{4} = \frac{23}{4} \] Now, multiply the two fractions: \[ \frac{22}{3} \times \frac{23}{4} = \frac{22 \times 23}{3 \times 4} = \frac{506}{12} \] Finally, we can simplify that fraction by dividing both the numerator and denominator by \(2\): \[ \frac{253}{6} \quad \text{or} \quad 42 \frac{1}{6} \, \text{as a mixed number.} \] --- **1.2.3. \( \frac{5}{17} + \frac{8}{4} \)** First, simplify \(\frac{8}{4}\) to \(2\). Now, to add fractions, they need a common denominator. The denominators of \(17\) and \(1\) (from \(2\)) have a common denominator of \(17\). So we convert \(2\) into a fraction with that denominator: \[ 2 = \frac{2 \times 17}{1 \times 17} = \frac{34}{17} \] Now we can add: \[ \frac{5}{17} + \frac{34}{17} = \frac{5 + 34}{17} = \frac{39}{17} \] And there we have it! This improper fraction can also be expressed as a mixed number: \[ 2 \frac{5}{17} \] Math can be fun when you can break it down step by step!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad