Pregunta
upstudy study bank question image url

Solve the equation \( 2 x+4 \frac{1}{5}=9 \). Explain the steps and properties you used.

Ask by Pearson Wilson. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the equation \( 2x + 4 \frac{1}{5} = 9 \), follow these steps: 1. Convert the mixed number to an improper fraction: \( 4 \frac{1}{5} = \frac{21}{5} \). 2. Subtract \( \frac{21}{5} \) from both sides: \( 2x = 9 - \frac{21}{5} \). 3. Simplify the right side: \( 2x = \frac{24}{5} \). 4. Divide both sides by 2: \( x = \frac{12}{5} \) or \( x = 2 \frac{2}{5} \). So, the solution is \( x = \frac{12}{5} \) or \( x = 2 \frac{2}{5} \).

Solución

Certainly! Let's solve the equation step by step and explain each part of the process. **Given Equation:** \[ 2x + 4 \frac{1}{5} = 9 \] **Step 1: Convert the Mixed Number to an Improper Fraction** First, it's easier to work with improper fractions rather than mixed numbers. The term \( 4 \frac{1}{5} \) is a mixed number, which we can convert to an improper fraction. \[ 4 \frac{1}{5} = \left(4 \times 5\right) + 1 = 20 + 1 = 21 \Rightarrow \frac{21}{5} \] So, the equation becomes: \[ 2x + \frac{21}{5} = 9 \] **Step 2: Isolate the Variable Term** Our goal is to solve for \( x \), so we'll first isolate the term containing \( x \). To do this, subtract \( \frac{21}{5} \) from both sides of the equation. \[ 2x + \frac{21}{5} - \frac{21}{5} = 9 - \frac{21}{5} \] \[ 2x = 9 - \frac{21}{5} \] **Step 3: Simplify the Right Side** To subtract \( \frac{21}{5} \) from 9, it's helpful to express 9 as a fraction with a denominator of 5. \[ 9 = \frac{45}{5} \] \[ 2x = \frac{45}{5} - \frac{21}{5} \] \[ 2x = \frac{45 - 21}{5} \] \[ 2x = \frac{24}{5} \] **Step 4: Solve for \( x \)** Now, divide both sides of the equation by 2 to solve for \( x \). \[ 2x = \frac{24}{5} \] \[ x = \frac{24}{5} \div 2 \] \[ x = \frac{24}{5} \times \frac{1}{2} \] \[ x = \frac{24}{10} \] \[ x = \frac{12}{5} \] \[ x = 2 \frac{2}{5} \] **Solution:** \[ x = \frac{12}{5} \quad \text{or} \quad x = 2 \frac{2}{5} \] **Summary of Properties and Steps Used:** 1. **Conversion of Mixed Numbers:** Changed the mixed number \( 4 \frac{1}{5} \) to an improper fraction \( \frac{21}{5} \) for easier manipulation. 2. **Isolating the Variable:** Subtracted \( \frac{21}{5} \) from both sides to isolate the term containing \( x \). 3. **Common Denominator:** Converted whole numbers to fractions with a common denominator to perform the subtraction. 4. **Solving for \( x \):** Divided both sides by the coefficient of \( x \) (which is 2) to find the value of \( x \). By following these steps systematically, we arrive at the solution \( x = \frac{12}{5} \) or \( x = 2 \frac{2}{5} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \(2x + 4 \frac{1}{5} = 9\), you first need to convert the mixed number \(4 \frac{1}{5}\) into an improper fraction or a decimal. Here, \(4 \frac{1}{5} = 4 + \frac{1}{5} = 4 + 0.2 = 4.2\). Now, substitute \(4.2\) back into the equation: \[2x + 4.2 = 9.\] Next, isolate \(2x\) by subtracting \(4.2\) from both sides: \[2x = 9 - 4.2.\] Computing the right side, we find: \[2x = 4.8.\] Now, divide both sides by \(2\) to solve for \(x\): \[x = \frac{4.8}{2} = 2.4.\] Thus, the solution is \(x = 2.4\). To verify, substitute \(2.4\) back into the original equation: \[2(2.4) + 4 \frac{1}{5} = 4.8 + 4.2 = 9,\] which confirms that our solution is correct!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad