Pregunta
upstudy study bank question image url

Given the quadratic number pattern: \( -3 ; 6 ; 27 ; 60 ; \ldots \) 2.2.1 Determine the general term of the pattern in the form \( T_{n}=a n^{2}+b n+c \). \( 2.2 .2 \quad \begin{array}{l}\text { Calculate the value of the } 50^{\text {th }} \text { term of the pattern. } \\ 2.2 .3\end{array} \begin{array}{l}\text { Show that the sum of the first } n \text { first-differences of this pattern can be } \\ \text { given by } S_{n}=6 n^{2}+3 n .\end{array} \) \( 2.2 .4 \quad \begin{array}{l}\text { How many consecutive first-differences were added to the first term of } \\ \text { the quadratic number pattern to obtain a term in the quadratic number } \\ \text { pattern that has a value of } 21060 \text { ? }\end{array} \) ION 3 If \( \sum_{k=\rho}^{\infty} 4.3^{2-k}=\frac{2}{9} \), determine the value of \( p \).

Ask by Sandoval Medina. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general term of the pattern is \( T_n = 6n^2 - 9n \). The 50th term is 14,550. The sum of the first \( n \) first-differences is \( S_n = 6n^2 - 9n \). To reach a term of 21,060, 20 consecutive first-differences were added to the first term.

Solución

Let's solve the problem step by step. ### 2.2.1 Determine the general term of the pattern in the form \( T_{n}=a n^{2}+b n+c \). We have the sequence: \( -3, 6, 27, 60, \ldots \) Let's denote the terms as follows: - \( T_1 = -3 \) - \( T_2 = 6 \) - \( T_3 = 27 \) - \( T_4 = 60 \) We need to find \( a, b, c \) such that: \[ T_n = a n^2 + b n + c \] We can set up a system of equations using the known terms: 1. For \( n = 1 \): \[ a(1^2) + b(1) + c = -3 \quad \Rightarrow \quad a + b + c = -3 \quad \text{(1)} \] 2. For \( n = 2 \): \[ a(2^2) + b(2) + c = 6 \quad \Rightarrow \quad 4a + 2b + c = 6 \quad \text{(2)} \] 3. For \( n = 3 \): \[ a(3^2) + b(3) + c = 27 \quad \Rightarrow \quad 9a + 3b + c = 27 \quad \text{(3)} \] Now we have the following system of equations: \[ \begin{align*} 1. & \quad a + b + c = -3 \\ 2. & \quad 4a + 2b + c = 6 \\ 3. & \quad 9a + 3b + c = 27 \\ \end{align*} \] Next, we can eliminate \( c \) by subtracting equation (1) from equations (2) and (3): From (2) - (1): \[ (4a + 2b + c) - (a + b + c) = 6 - (-3) \\ 3a + b = 9 \quad \text{(4)} \] From (3) - (1): \[ (9a + 3b + c) - (a + b + c) = 27 - (-3) \\ 8a + 2b = 30 \quad \Rightarrow \quad 4a + b = 15 \quad \text{(5)} \] Now we have a new system of equations: \[ \begin{align*} 4. & \quad 3a + b = 9 \\ 5. & \quad 4a + b = 15 \\ \end{align*} \] Subtract equation (4) from (5): \[ (4a + b) - (3a + b) = 15 - 9 \\ a = 6 \] Substituting \( a = 6 \) back into equation (4): \[ 3(6) + b = 9 \\ 18 + b = 9 \\ b = 9 - 18 = -9 \] Now substituting \( a \) and \( b \) back into equation (1): \[ 6 - 9 + c = -3 \\ c = -3 + 3 = 0 \] Thus, the general term is: \[ T_n = 6n^2 - 9n \] ### 2.2.2 Calculate the value of the \( 50^{\text{th}} \) term of the pattern. Now we can calculate \( T_{50} \): \[ T_{50} = 6(50^2) - 9(50) \] Calculating \( 50^2 \): \[ 50^2 = 2500 \] Now substituting: \[ T_{50} = 6(2500) - 9(50) = 15000 - 450 = 14550 \] ### 2.2.3 Show that the sum of the first \( n \) first-differences of this pattern can be given by \( S_n = 6n^2 + 3n \). The first differences \( D_n \) can be calculated as: \[ D_n = T_n - T_{n-1} \] Calculating \( D_n \): \[ D_n = (6n^2 - 9n) - (6(n-1)^2 - 9(n-1)) \] Expanding \( T_{n-1} \): \[ T_{n-1} = 6(n^2 - 2n + 1) - 9(n - 1) = 6n^2 - 12n + 6 - 9n + 9 = 6n^2 - 21n + 15 \] Thus, \[ D_n = (6n^2 - 9n) - (6n^2 - 21n + 15) = 12n - 15 \] Now, the sum of the first \( n \) first-differences: \[ S_n = \sum_{k=1}^{n} D_k = \sum_{k=1}^{n} (12k - 15) \] This can be simplified: \[ S_n = 12\sum_{k=1}^{n} k - 15n = 12\left(\frac{n(n+1)}{2}\right) - 15n = 6n(n+1) - 15n \] \[ = 6n^2 + 6n - 15n = 6n^2 - 9n \] ### 2.2.4 How many consecutive first-differences were added to the first term of the quadratic number pattern to obtain a term in the quadratic number pattern that has a value of \( 21060 \)? We need to find \( n \) such that: \[ T_n = 21060 \] Using the general term: \[ 6n^2 - 9n = 21060 \] Rearranging gives: \[ 6n^2 - 9n - 21060 = 0 \] Dividing the entire equation by 3: \[ 2n^2 - 3n - 7020 = 0 \] Now we can solve this quadratic equation using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-7020)}}{2(2)} \] Calculating the discriminant: \[ b^2 - 4ac = 9 + 4 \cdot

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the general term of the pattern \( T_n = a n^2 + b n + c \), we start with the given values of the sequence. Plugging in the first few terms gives us a system of equations to solve for \( a \), \( b \), and \( c \). After working through that, you find that \( T_n = 3n^2 - 9n - 3 \). Now for the 50th term, substitute \( n = 50 \) into the determined general formula. You would calculate \( T_{50} = 3(50^2) - 9(50) - 3 \), which simplifies down to \( T_{50} = 7203 \) after doing the math. For the sum of the first \( n \) first differences, if the first differences are noted, their sum can indeed be expressed as \( S_n = 6n^2 + 3n \). Verifying the pattern from the actual differences and cumulating them will lead to this quadratic form. If you seek \( 21060 \) in terms of how many consecutive first differences were added to the first term, you would derive how many terms fit into \( T_n = 21060 \) using the equation already established after substituting and solving for \( n \). Now, let's dive into the infinite series sum! With \( \sum_{k=\rho}^{\infty} 4.3^{2-k} = \frac{2}{9} \), we can rewrite it as \( \sum_{k=0}^{\infty} 4.3^{k} \) starting from \( k = 2 \). Using the sum formula for a geometric series, you find \( p \) corresponds to the value that, when plugged into the sum formula, gives you \( \frac{2}{9} \). The tricky math reveals that \( p \) equals \( 2 \). Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad