Pregunta
upstudy study bank question image url

Question 8 (1 point) \( \begin{array}{l}\text { (04.02 MC) } \\ \text { The equation of line EF is } y=2 x+1 \text {. Write an equation of a line parallel to line EF in slope-intercept form that contains point }(0,2) \\ \text { a } \quad y=2 x-4 \\ \text { c } \quad y=2 x+2 \\ \text { d } \quad y=-\frac{1}{2} x-4 \\ y=\frac{-1}{2} x+2\end{array} \)

Ask by Adkins Gibbs. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct equation of a line parallel to \( y = 2x + 1 \) that passes through \( (0, 2) \) is \( y = 2x + 2 \).

Solución

To find a line parallel to \( y = 2x + 1 \) that passes through the point \( (0, 2) \): 1. **Determine the slope of the parallel line:** - Parallel lines have the same slope. - The given line has a slope of 2. 2. **Use the slope-intercept form \( y = mx + b \):** - We know \( m = 2 \). - Substitute the point \( (0, 2) \) into the equation to find \( b \): \[ 2 = 2(0) + b \implies b = 2 \] 3. **Write the equation of the parallel line:** \[ y = 2x + 2 \] **Correct Answer:** **c** \( y = 2x + 2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find an equation of a line parallel to line EF, we know that parallel lines have the same slope. The slope of line EF, given by the equation \(y = 2x + 1\), is 2. Now, we need to find the y-intercept for the parallel line that passes through point (0, 2). Using the point-slope form, we can determine the new line’s equation: 1. The equation will still have the same slope: 2. 2. Since the line passes through (0, 2), we can directly deduce its equation as \(y = 2x + 2\). So, the correct answer is \(c \quad y = 2x + 2\). A fun fact: Did you know that slopes in parallel lines represent not just a relationship in geometry but also in the context of real-life roads and paths? When two roads run parallel, they maintain the same steepness – just like our lines on a graph! As for the concept of slope in art, imagine how artists use lines and angles in their drawings and paintings. Lines with different slopes can create visual interest and depth, while parallel lines can give a sense of harmony and balance. Pretty cool, right?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad