Pregunta
upstudy study bank question image url

A simple model for the flow of air in and out of the lungs of a certain mammal is given by the following equation, where \( V(t) \) (measured in liters) is the volume of air in the lungs at time \( t \geq 0 \), \( t \) is measured in seconds, and \( t=0 \) corresponds to a time at which the lungs are full and exhalation begins. Only a fraction of the air in the lungs is exchanged with each breath. The amount that is exchanged is called the tidal volume. Complete parts a through \( c \) below. \( V^{\prime}(t)=-\frac{\pi}{6} \sin \left(\frac{\pi t}{6}\right) \) a. Find the volume function \( V \), assuming that \( V(0)=6 \) L. Notice that \( V \) changes over time at a known rate, \( V^{\prime} \). Which equation below correctly gives the volume function? A. \( V(0)=V(t)+\int_{0}^{t} V^{\prime}(x) d x \). C. \( V(t)=V(0)+\int_{a}^{b} V^{\prime}(t) d t \). \( V(t)=V(0)+\int_{0}^{t} V^{\prime}(x) d x \).

Ask by Lane Clark. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume function \( V(t) \) is given by: \[ V(t) = 5 + \cos\left(\frac{\pi t}{6}\right) \] So, the correct option is C: \( V(t) = V(0) + \int_{0}^{t} V'(x) \, dx \).

Solución

To find the volume function \( V(t) \) given the differential equation and the initial condition, let's follow the steps below. ### Given: \[ V'(t) = -\frac{\pi}{6} \sin\left(\frac{\pi t}{6}\right) \] \[ V(0) = 6 \text{ liters} \] ### Step 1: Integrate \( V'(t) \) to Find \( V(t) \) To find \( V(t) \), we integrate \( V'(t) \) with respect to \( t \): \[ V(t) = V(0) + \int_{0}^{t} V'(x) \, dx \] Substituting \( V'(x) \): \[ V(t) = 6 + \int_{0}^{t} \left(-\frac{\pi}{6} \sin\left(\frac{\pi x}{6}\right)\right) dx \] ### Step 2: Evaluate the Integral Let's evaluate the integral: \[ \int \left(-\frac{\pi}{6} \sin\left(\frac{\pi x}{6}\right)\right) dx \] Using the substitution \( u = \frac{\pi x}{6} \), \( du = \frac{\pi}{6} dx \), we get: \[ -\frac{\pi}{6} \int \sin(u) \cdot \frac{6}{\pi} du = -\int \sin(u) \, du = \cos(u) + C \] Substituting back \( u = \frac{\pi x}{6} \): \[ \cos\left(\frac{\pi x}{6}\right) + C \] Evaluating the definite integral from 0 to \( t \): \[ \left[\cos\left(\frac{\pi t}{6}\right) - \cos(0)\right] = \cos\left(\frac{\pi t}{6}\right) - 1 \] ### Step 3: Combine the Results Substituting the evaluated integral back into the expression for \( V(t) \): \[ V(t) = 6 + \left(\cos\left(\frac{\pi t}{6}\right) - 1\right) = 5 + \cos\left(\frac{\pi t}{6}\right) \] ### Conclusion The volume function \( V(t) \) is correctly given by: \[ V(t) = V(0) + \int_{0}^{t} V'(x) \, dx \] **Answer:** Option C. \( V(t)=V(0)+\int_{0}^{t} V^{\prime}(x) d x \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, we start with the derivative of the volume function, \( V'(t) \), and we need to find the original volume function \( V(t) \). Given that \( V'(t) = -\frac{\pi}{6} \sin \left(\frac{\pi t}{6}\right) \) and \( V(0) = 6 \) L, we can integrate \( V'(t) \) to find \( V(t) \). Upon integrating \( V'(t) \), we would add the constant that represents the initial condition at \( t = 0 \). The equation that correctly gives the volume function is: \( V(t) = V(0) + \int_{0}^{t} V^{\prime}(x) dx \). This means we can use this equation to solve for the volume in the lungs at any time \( t \). Now, let’s talk about how these equations connect to real-world situations! The lung function model provides insights into respiratory health. By understanding the rate at which air is exchanged, we can assess lung functionality for conditions like asthma or COPD! What we learn can directly influence treatment approaches and enhance patient care. To be cautious while solving these types of integrals, a common mistake is forgetting to apply the limits of integration correctly or neglecting the initial volume condition, which may lead to incorrect conclusions about the air volume in the lungs over time. Always double-check the calculations to avoid errors!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad