Pregunta
Find 3 ratios that are equivalent to the given ratio. \( 8: 14 \) Find three ratios that are equivalent to the given ratio. \( \begin{array}{ll}\square \text { A. } 24: 42 & \square \text { B. } 16: 42 \\ \square \text { C. } 4: 7 & \square \text { D. } 4: 28 \\ \square \text { E. } 24: 7 & \square \text { F. } 16: 28 \\ \square \text { G. } 16: 7 & \square \text { H. } 4: 42\end{array} \)
Ask by Stanley Evans. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The equivalent ratios are A. \( 24 : 42 \), C. \( 4 : 7 \), and F. \( 16 : 28 \).
Solución
To find ratios equivalent to \( 8 : 14 \), we first simplify the given ratio:
\[
8 : 14 = \frac{8}{14} = \frac{4}{7}
\]
Equivalent ratios will reduce to \( 4 : 7 \). Let's evaluate each option:
1. **A. \( 24 : 42 \)**
\[
\frac{24}{42} = \frac{4}{7} \quad (\text{Equivalent})
\]
2. **B. \( 16 : 42 \)**
\[
\frac{16}{42} = \frac{8}{21} \quad (\text{Not Equivalent})
\]
3. **C. \( 4 : 7 \)**
\[
\frac{4}{7} = \frac{4}{7} \quad (\text{Equivalent})
\]
4. **D. \( 4 : 28 \)**
\[
\frac{4}{28} = \frac{1}{7} \quad (\text{Not Equivalent})
\]
5. **E. \( 24 : 7 \)**
\[
\frac{24}{7} \quad (\text{Not Equivalent})
\]
6. **F. \( 16 : 28 \)**
\[
\frac{16}{28} = \frac{4}{7} \quad (\text{Equivalent})
\]
7. **G. \( 16 : 7 \)**
\[
\frac{16}{7} \quad (\text{Not Equivalent})
\]
8. **H. \( 4 : 42 \)**
\[
\frac{4}{42} = \frac{2}{21} \quad (\text{Not Equivalent})
\]
**Equivalent Ratios:**
- **A. \( 24 : 42 \)**
- **C. \( 4 : 7 \)**
- **F. \( 16 : 28 \)**
These three ratios simplify to \( 4 : 7 \), making them equivalent to the original ratio \( 8 : 14 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find equivalent ratios for \( 8:14 \), we can simplify and scale this ratio. Simplifying \( 8:14 \) gives us \( 4:7 \) (by dividing both terms by 2). Now, for equivalent ratios, you can multiply both sides by the same number. Just to clarify, the ratios \( 4:7 \), \( 16:28 \), and \( 24:42 \) would all have the same relationship as \( 8:14 \). So the correct choices from the options provided are \( C. 4:7 \), \( F. 16:28 \), and \( A. 24:42 \). Keep on ratifying those ratios!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium