Pregunta
upstudy study bank question image url

#. 5
increasing with the range ?
a.
f.
c.
d.

Ask by Ward Norris. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct function is .

Solución

  1. For the function to be increasing, the exponential component must be increasing. An exponential function is increasing if and only if .
  2. Examining option a:
    Here, the base is (which is greater than 1), so is increasing. Multiplying by a positive factor preserves this behavior.
  3. Next, we determine the range. Since exponential functions have a horizontal asymptote, we examine:
    • As , , hence:
    • As , , hence:
    Therefore, the range of the function is .
  4. Options f, c, and d either have a negative coefficient or a base less than 1 (or both), which cause the function to be decreasing or have a range that does not match .
Thus, the correct answer is
a. .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine which function increases with the range , we can analyze the behavior of each function at extreme values of . The key is to identify which function grows without bound as increases, starting from a minimum value just above 2.
The first function, , dominates as it exponentially increases as increases and crosses the value 2, making it increase into .
Conversely, both and decrease and will ultimately be constrained above 2. They don’t satiate the needed growth behavior.
If you’re curious about exponential functions, watch out for their transformations! They can stretch and shift into crazy forms. Keep in mind that the base of exponentiation (here, 5) hugely determines growth direction; when it’s greater than 1, the function will soar to infinity, while a base less than 1 will plummet instead!
When dealing with function ranges and behaviors, a common mistake is overlooking horizontal shifts! Often, people assume that if a function approaches a certain number, it can’t exceed it. However, understanding vertical shifts can clarify when functions will grow beyond a certain limit, as seen in .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad