5. The \( \mathrm{K}+ \) meson, a subatomic particle, has an average rest lifetime of \( 1.0 \times 10^{-8} \mathrm{~s} \). If the particle travels through the laboratory at \( 2.6 \times 10^{8} \mathrm{~m} / \mathrm{s} \), by how much has its lifetime, relative to the laboratory, increased?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To calculate how much the lifetime of the \( \mathrm{K}+ \) meson has increased relative to the laboratory frame, we can use the concept of time dilation from Einstein's theory of relativity. The time dilation formula is given by: \[ \Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}} \] where: - \( \Delta t' \) is the dilated lifetime, - \( \Delta t \) is the proper lifetime (rest lifetime) of the particle, - \( v \) is the velocity of the particle, - \( c \) is the speed of light (approximately \( 3.0 \times 10^8 \, \text{m/s} \)). Given: - \( \Delta t = 1.0 \times 10^{-8} \, \text{s} \) - \( v = 2.6 \times 10^{8} \, \text{m/s} \) First, we need to calculate \( \frac{v^2}{c^2} \): \[ \frac{v^2}{c^2} = \left(\frac{2.6 \times 10^8}{3.0 \times 10^8}\right)^2 = \left(0.8667\right)^2 \approx 0.75 \] Now we can calculate \( \sqrt{1 - \frac{v^2}{c^2}} \): \[ \sqrt{1 - 0.75} = \sqrt{0.25} = 0.5 \] Now we substitute everything into the time dilation formula: \[ \Delta t' = \frac{1.0 \times 10^{-8}}{0.5} = 2.0 \times 10^{-8} \, \text{s} \] The increase in lifetime, relative to the laboratory frame, is: \[ \Delta t' - \Delta t = 2.0 \times 10^{-8} - 1.0 \times 10^{-8} = 1.0 \times 10^{-8} \, \text{s} \] Thus, the lifetime of the \( \mathrm{K}+ \) meson, as observed in the laboratory frame, has increased by \( 1.0 \times 10^{-8} \, \text{s} \).