Pregunta
- The
meson, a subatomic particle, has an average rest lifetime of
.
If the particle travels through the laboratory at
, by how much has
its lifetime, relative to the laboratory, increased?
If the particle travels through the laboratory at
its lifetime, relative to the laboratory, increased?
Ask by Wheeler Huff. in Canada
Jan 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The
meson’s lifetime increases by a factor of 2 in the laboratory frame due to time dilation.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To calculate how much the lifetime of the
meson has increased relative to the laboratory frame, we can use the concept of time dilation from Einstein’s theory of relativity. The time dilation formula is given by:
where:
-
is the dilated lifetime, -
is the proper lifetime (rest lifetime) of the particle, -
is the velocity of the particle, -
is the speed of light (approximately ).
Given:
First, we need to calculate
:
Now we can calculate
:
Now we substitute everything into the time dilation formula:
The increase in lifetime, relative to the laboratory frame, is:
Thus, the lifetime of the
meson, as observed in the laboratory frame, has increased by
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium