Pregunta
upstudy study bank question image url

The vertices of a figure are \( G(-2,-2), H(-2,6), J(2,6) ; k=0.25 \). Draw the tigure and its image amter a diabuon with th given scale factor. \[ \triangle \text { TOOLS } \]

Ask by Zimmerman Macdonald. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To perform a dilation with a scale factor of 0.25 on the triangle with vertices \( G(-2,-2) \), \( H(-2,6) \), and \( J(2,6) \), follow these steps: 1. **Original Triangle:** - \( G(-2, -2) \) - \( H(-2, 6) \) - \( J(2, 6) \) 2. **Dilated Image Triangle:** - \( G'(-0.5, -0.5) \) - \( H'(-0.5, 1.5) \) - \( J'(0.5, 1.5) \) **Visualization:** - Plot both triangles on a coordinate plane to see the scaling effect. This dilation reduces the size of the original triangle by a factor of 0.25.

Solución

To perform a **dilation** (also known as a scaling transformation) on the given triangle with a **scale factor** \( k = 0.25 \), we'll follow these steps: 1. **Plot the Original Triangle** with vertices \( G(-2, -2) \), \( H(-2, 6) \), and \( J(2, 6) \). 2. **Apply the Dilation** to each vertex to find the coordinates of the image triangle. 3. **Plot the Image Triangle** to visualize the transformation. Since we cannot provide a graphical drawing here, I'll illustrate the process using coordinates and describe the positions of both triangles on a coordinate plane. --- ### 1. Original Triangle Coordinates - **Vertex G**: \((-2, -2)\) - **Vertex H**: \((-2, 6)\) - **Vertex J**: \((2, 6)\) **Visualization on Coordinate Plane:** ``` Y | 6 | H (-2,6) ________ J (2,6) | | | | | | | | | | | | 0 | | | | | | | | | | | | -2|__________G (-2,-2) | |______________________________ X -2 0 2 ``` - **Side GH** is vertical from \( (-2, -2) \) to \( (-2, 6) \). - **Side HJ** is horizontal from \( (-2, 6) \) to \( (2, 6) \). - **Side JG** connects \( (2, 6) \) back to \( (-2, -2) \), forming a right triangle. --- ### 2. Applying Dilation with Scale Factor \( k = 0.25 \) **Dilation Formula:** \[ (x', y') = (k \cdot x, k \cdot y) \] **Calculations for Each Vertex:** - **Vertex G':** \[ G' = (0.25 \times -2, 0.25 \times -2) = (-0.5, -0.5) \] - **Vertex H':** \[ H' = (0.25 \times -2, 0.25 \times 6) = (-0.5, 1.5) \] - **Vertex J':** \[ J' = (0.25 \times 2, 0.25 \times 6) = (0.5, 1.5) \] **Image Triangle Coordinates:** - **Vertex G'**: \((-0.5, -0.5)\) - **Vertex H'**: \((-0.5, 1.5)\) - **Vertex J'**: \((0.5, 1.5)\) --- ### 3. Image Triangle Visualization ``` Y | 1.5 | H' (-0.5,1.5) ______ J' (0.5,1.5) | | | | | | | | | 0.5 | | | | | | | | | | | | -0.5|___________G' (-0.5,-0.5) | |______________________________ X -0.5 0 0.5 ``` - **Side G'H'** is vertical from \( (-0.5, -0.5) \) to \( (-0.5, 1.5) \). - **Side H'J'** is horizontal from \( (-0.5, 1.5) \) to \( (0.5, 1.5) \). - **Side J'G'** connects \( (0.5, 1.5) \) back to \( (-0.5, -0.5) \), forming a smaller right triangle. --- ### Summary of Transformation - **Original Triangle**: - **Vertices**: \( G(-2, -2) \), \( H(-2, 6) \), \( J(2, 6) \) - **Shape**: Right triangle with legs of lengths 8 (vertical) and 4 (horizontal). - **Dilated Image Triangle**: - **Vertices**: \( G'(-0.5, -0.5) \), \( H'(-0.5, 1.5) \), \( J'(0.5, 1.5) \) - **Shape**: Similar right triangle scaled down by a factor of 0.25, resulting in legs of lengths 2 (vertical) and 1 (horizontal). **Note:** The dilation is performed with respect to the **origin (0,0)**. If a different center of dilation is desired, the process would need to adjust accordingly. --- ### Tools for Visualization To visualize these triangles graphically, you can use graphing software or online tools such as: - **Desmos**: [https://www.desmos.com/calculator](https://www.desmos.com/calculator) - **GeoGebra**: [https://www.geogebra.org/graphing](https://www.geogebra.org/graphing) - **Microsoft Excel** or **Google Sheets**: Using scatter plots. **Example Steps in Desmos:** 1. **Plot Original Triangle:** - Enter points: \( G(-2, -2) \), \( H(-2, 6) \), \( J(2, 6) \). - Draw segments between them. 2. **Plot Image Triangle:** - Enter points: \( G'(-0.5, -0.5) \), \( H'(-0.5, 1.5) \), \( J'(0.5, 1.5) \). - Draw segments between them. 3. **Compare Both Triangles:** - Observe the scaling effect of the dilation. --- If you have access to these tools, you can create a visual representation to better understand the dilation transformation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To visualize and draw the triangle formed by the vertices \( G(-2,-2), H(-2,6), J(2,6) \), plot these points on a coordinate grid. Connect the points to form triangle \( GHJ \). Next, to create the image of this triangle after a dilation with a scale factor of \( k = 0.25 \), calculate the new coordinates by using the formula \( (x', y') = (k \cdot x, k \cdot y) \). So, for \( G \), \( H \), and \( J \), you’ll find \( G'(-0.5, -0.5), H'(-0.5, 1.5), J'(0.5, 1.5) \). Draw triangle \( G'H'J' \) using these new points to represent the dilated image. After you have your original triangle and its dilated image plotted, it's time to think about how these transformations work in everyday life! For example, when you resize a digital image, you’re essentially applying a dilation. The computer maintains the proportions while adjusting dimensions, much like how we adjusted the coordinates of our triangle. This understanding can be crucial in fields like architecture or graphic design where scaling models or images is standard practice!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad