Pregunta
upstudy study bank question image url

If \( \$ 5,000 \) is invested at \( 8 \% \) annual interest compounded monthly, what is the account balance after 5 years, assuming no additional deposits or withdrawals are made a.) \( \$ 7,346.64 \) b.) \( \$ 7,429.74 \) c.) \( \$ 7,449.23 \) d.) \( \$ 7,401.22 \)

Ask by Willis Lewis. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The account balance after 5 years is approximately \$7,449.23.

Solución

To determine the account balance after 5 years with an initial investment of \$5,000 at an annual interest rate of 8% compounded monthly, we can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after \( t \) years, including interest. - \( P \) is the principal amount (\$5,000). - \( r \) is the annual interest rate (8% or 0.08). - \( n \) is the number of times that interest is compounded per year (12 for monthly). - \( t \) is the time the money is invested for in years (5 years). Plugging in the values: \[ A = 5000 \left(1 + \frac{0.08}{12}\right)^{12 \times 5} \] \[ A = 5000 \left(1 + 0.0066667\right)^{60} \] \[ A = 5000 \left(1.0066667\right)^{60} \] Calculating the compound factor: \[ \left(1.0066667\right)^{60} \approx 1.48923 \] So, \[ A \approx 5000 \times 1.48923 = 7446.15 \] Comparing this with the given options: - **c.) \$7,449.23** is the closest to our calculated value of \$7,446.15. **Answer:** **c.) \$7,449.23**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the account balance after 5 years for an investment of \( \$ 5,000 \) at an \( 8\% \) annual interest rate compounded monthly, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. Plugging in the values: - \( P = 5000 \) - \( r = 0.08 \) - \( n = 12 \) (monthly compounding) - \( t = 5 \) The calculation becomes: \[ A = 5000 \left(1 + \frac{0.08}{12}\right)^{12 \times 5} \] \[ A = 5000 \left(1 + 0.0066667\right)^{60} \] \[ A = 5000 \left(1.0066667\right)^{60} \] \[ A \approx 5000 \times 1.48985 \approx 7449.23 \] So the account balance after 5 years is approximately \( \$ 7,449.23 \), which corresponds to option c.) \( \$ 7,449.23 \). Let’s give this a little historical twist: Did you know that the concept of compound interest dates back to ancient Mesopotamia? As trade expanded around 2000 B.C., merchants began to use interest to lend money, ensuring the early economic systems flourished! For those wanting to dive deeper, "The Psychology of Money" by Morgan Housel offers fascinating insights into how people think about money and investing. It’s both timeless and relatable, making complex financial topics accessible and engaging for readers of all backgrounds!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad