Pregunta
upstudy study bank question image url

Follow the proper order of operations to evaluate the following. \( \frac{-7\left(5^{2}-20\right)}{8-13} \)

Ask by Harper Daniels. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The final answer is 7.

Solución

Sure, let's evaluate the expression step by step using the proper order of operations (PEMDAS/BODMAS): \[ \frac{-7\left(5^{2}-20\right)}{8-13} \] **Step 1: Evaluate the exponent** \[ 5^{2} = 25 \] **Step 2: Perform the operations inside the parentheses** \[ 25 - 20 = 5 \] Now, the expression becomes: \[ \frac{-7 \times 5}{8 - 13} \] **Step 3: Perform the multiplication in the numerator** \[ -7 \times 5 = -35 \] So, the expression is now: \[ \frac{-35}{8 - 13} \] **Step 4: Perform the subtraction in the denominator** \[ 8 - 13 = -5 \] Now, the expression is: \[ \frac{-35}{-5} \] **Step 5: Divide the numerator by the denominator** \[ \frac{-35}{-5} = 7 \] **Final Answer:** \( 7 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let's simplify the expression step-by-step. We start with \(5^{2} - 20\), which gives us \(25 - 20 = 5\). Now, replace that in the expression: \(\frac{-7(5)}{8-13}\). Next, we simplify the denominator, \(8 - 13\), which results in \(-5\). Now we have: \(\frac{-7(5)}{-5}\). The \(-5\) in the denominator will cancel with the \(-5\) from \(-7(5)\), leading to: \(\frac{-35}{-5} = 7\). So, the final answer is \(7\). Now, let’s add a bit more spice to our math expedition! Did you know the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)), originally came from a need to standardize mathematical expressions? This helps prevent confusion in calculations and has been taught in schools for generations! In terms of real-world application, understanding these rules can help with everything from budgeting your finances to cooking recipes that require precise measurements and adjustments. Just imagine trying to bake a cake without following the order of operations with your ingredients—it could flop or taste unbalanced! So, next time you whip up a recipe, remember: order counts!

Latest Pre Algebra Questions

Exercise 1.7 1. Expand: a) \( \sum_{k=1}^{5} k^{2} \) b) \( \sum_{k=1}^{6} \frac{k}{k+2} \) c) \( \sum_{r=2}^{5} 2^{r} \) d) \( \sum_{r=2}^{8}(-1)^{r} \) e) \( \sum_{k=3}^{9}(-3)(5)^{k} \) f) \( \sum_{k=0}^{12}(7-2 k) \) 2. Write in sigma notation: a) \( 1+2+3+4+5+6 \) b) \( 1+4+9+16+25+36+49 \) (c) \( 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{10} \) d) \( \frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}+\ldots+\frac{20}{21} \) e) \( 1.2+2.3+3.4+\ldots+ \) to \( n \) terms. f) \( 3+3+3+\ldots+ \) to \( n \) terms. g) \( a+a+a+\ldots+ \) to \( n \) terms. h) \( p^{2}+3 p^{4}+5 p^{6}+\ldots+ \) to \( n \) terms. i) \( x^{n}+x^{n-1} y+x^{n-2} y^{2}+x^{n-3} y^{3}+\ldots+x y^{n-1}+y^{n} \) j) \( x+2 x^{2}+6 x^{3}+24 x^{4}+120 x^{5}+\ldots \) to \( n \) terms. 3. Determine \( n \) in each series: a) \( \sum_{r=1}^{n}\left(\frac{5 r}{4}\right)=150 \) b) \( \sum_{r=3}^{n}(6 r-1)=2225 \) c) \( \sum_{r=1}^{n}(22-3 r)=44 \) d) \( \sum_{k=1}^{n} 3(2)^{k-1}=381 \) e) \( \sum_{k=1}^{n} \frac{1}{5}(3)^{k-1}=24 \frac{1}{5} \) f) \( \sum_{k=1}^{n}(-8)\left(\frac{1}{2}\right)^{k-1}=-15 \frac{3}{4} \) g) \( \sum_{k=1}^{n} 8(1)^{k-1}=800 \) 4. Evaluate: a) \( \sum_{r=1}^{13}(3+2 r) \) b) \( \sum_{r=5}^{12}(2 r-5) \) c) \( \sum_{n=1}^{60} n x^{2} \) d) \( \sum_{r=0}^{13} 6\left(-\frac{1}{3}\right)^{r-1} 4,5 \) e) \( \sum_{x=1}^{5} \frac{1}{5}(-5)^{x-1} \) 5. a) What is the greatest number of terms for which \( \sum_{r=1}^{n}(r+1)<54 \) ? b) What is the least number of terms for which \( \sum_{r=1}^{n}(2 r-10)>22 \) ? 12 6. The sequence of triangular numbers is given by \( T_{1}=1 \) and \( T_{k+1}=T_{k}+(k+1) \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad