Pregunta
upstudy study bank question image url

Solve for and simultaneously:


1.3 * Show that is even for all positive integer values of

Ask by Cervantes Morrison. in South Africa
Mar 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are and . Additionally, the expression is even for all positive integers .

Solución

Step 1. Solve the system of equations
We are given:
  1. Solve the first equation for :
  2. Substitute into the second equation:
  3. Expand and simplify:
  4. Divide the entire equation by :
  5. Factor the quadratic:
  6. Solve for :
    • If , then .
    • If , then .
  7. Find the corresponding -values using :
    • For :
    • For :
Thus, the solutions are:

Step 2. Show that is even for all positive integers
Given the expression:
follow these steps:
  1. Factor out the common factor :
  2. Simplify the expression inside the parentheses:
  3. Hence, the expression becomes:
  4. Since is even, the product is even for any integer .
Thus, is even for all positive integers .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for and from the equations and , we can start by rearranging the first equation to express :
Next, we can substitute this expression for into the second equation:
This simplifies to:
Dividing the entire equation by 2 gives:
Factoring the quadratic yields:
Thus, or . Since we’re looking for positive integer values, we take . Substituting back into our equation for :
So, we find that one solution is .
Now, addressing the second part: to show that is even for all positive integers , we rewrite it as:
The term is clearly even since it’s multiplied by 4. The crucial factor is . Noticing that if , is always an even number since it combines a fraction (the 2) with a base of 5 (an odd number) raised to a positive integer power. Hence, the whole expression results in an even number for all positive integers .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad