Pregunta
upstudy study bank question image url

Question 5 Consider the function \( f(x)=-(5)^{x} \). Graph the function on a separate sheet of paper and identify the key features. Function type: \( \square \) \( y \)-Intercept: \( \square \) \( (0,-5) \) Domain: \( \square \) Range: \( \square \) \( \{y \mid y>0\} \) Increasing/Decreasing: always decreasing Positive/Negative: \( \square \) always negative Asymptote: \( \square \) \( y=0 \) End behavior As \( x \) increases, \( f(x) \) \( \square \) decreases and as \( x \) decreases, \( f(x) \) \( \square \) increases

Ask by Gordon Rogers. in the United States
Feb 07,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Function Type:** Exponential Function - **\( y \)-Intercept:** \( (0, -1) \) - **Domain:** All real numbers (\( \mathbb{R} \)) - **Range:** All negative real numbers (\( y < 0 \)) - **Increasing/Decreasing:** Always decreasing - **Positive/Negative:** Always negative - **Asymptote:** \( y = 0 \) (Horizontal Asymptote) - **End Behavior:** - As \( x \) increases, \( f(x) \) decreases. - As \( x \) decreases, \( f(x) \) increases. Graph: Starts at \( (0, -1) \), decreases rapidly as \( x \) increases, and approaches \( y = 0 \) as \( x \) decreases.

Solución

Let's analyze the function \( f(x) = -5^{x} \) and identify its key features by filling in the blanks provided. ### Function Analysis 1. **Function Type:** - **Exponential Function** The given function is an exponential function because it has the form \( f(x) = a \cdot b^{x} \), where \( b = 5 \) and \( a = -1 \). 2. **\( y \)-Intercept:** - **\((0, -1)\)** To find the \( y \)-intercept, evaluate \( f(0) \): \[ f(0) = -5^{0} = -1 \] So, the \( y \)-intercept is at the point \( (0, -1) \). 3. **Domain:** - **All real numbers (\( \mathbb{R} \))** Exponential functions are defined for all real numbers \( x \). 4. **Range:** - **\(\{ y \mid y < 0 \}\)** Since the exponential function \( 5^{x} \) is always positive and it is multiplied by -1, \( f(x) \) is always negative. 5. **Increasing/Decreasing:** - **Always decreasing** The function decreases because the base \( 5 \) is greater than 1 and it's multiplied by a negative constant, causing the graph to decline as \( x \) increases. 6. **Positive/Negative:** - **Always negative** As established in the range, \( f(x) \) is always negative. 7. **Asymptote:** - **\( y = 0 \)** The horizontal asymptote for this exponential function is the \( x \)-axis, \( y = 0 \), which the graph approaches but never touches. 8. **End Behavior:** - **As \( x \) increases, \( f(x) \) decreases and as \( x \) decreases, \( f(x) \) increases.** - **As \( x \to \infty \):** \( f(x) = -5^{x} \to -\infty \) - **As \( x \to -\infty \):** \( f(x) = -5^{x} \to 0^{-} \) (approaches 0 from below) ### Summary of Key Features - **Function Type:** Exponential Function - **\( y \)-Intercept:** \( (0, -1) \) - **Domain:** All real numbers (\( \mathbb{R} \)) - **Range:** \( \{ y \mid y < 0 \} \) - **Increasing/Decreasing:** Always decreasing - **Positive/Negative:** Always negative - **Asymptote:** \( y = 0 \) (Horizontal Asymptote) - **End Behavior:** - As \( x \) increases, \( f(x) \) **decreases** (heads towards \( -\infty \)) - As \( x \) decreases, \( f(x) \) **increases** (approaches 0 from below) ### Graphing the Function When graphing \( f(x) = -5^{x} \): - **Start at the \( y \)-intercept (0, -1).** - **The graph decreases rapidly as \( x \) increases.** - **As \( x \) becomes more negative, the graph approaches the horizontal asymptote \( y = 0 \) but never touches it.** - **There are no \( x \)-intercepts since the function never crosses the \( x \)-axis.** Here's a rough sketch of the graph: ![Graph of f(x) = -5^x](https://i.imgur.com/yourgraphlink.png) *(Please note: Replace the image link with an actual graph image if needed.)* ### Conclusion By filling in all the blanks correctly, we've identified that \( f(x) = -5^{x} \) is an always decreasing exponential function with a \( y \)-intercept at \( (0, -1) \), a domain of all real numbers, and a range of all negative real numbers. It has a horizontal asymptote at \( y = 0 \) and exhibits specific end behaviors as \( x \) approaches positive and negative infinity.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that exponential functions like \( f(x) = -(5)^x \) have unique behavior? While many exponential functions grow rapidly, this one, thanks to the negative sign, flips the graph upside down! It’s fascinating how a simple sign change can completely alter the characteristics – making it always negative and emphasizing that it decreases over its domain! When graphing this function, remember to sketch that horizontal asymptote at \( y=0 \). This represents a line that the function approaches but never quite reaches, as it simply continues to decrease towards negative infinity. Additionally, explore how the function behaves around the \( y \)-intercept; at \( (0, -5) \), it sets the scene for a graph that starts off low and keeps getting lower. Don’t forget to highlight that even as \( x \) creeps into very positive numbers, \( f(x) \) remains firmly below the x-axis!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad