Pregunta
upstudy study bank question image url

Determine whether the statement is true or false. If it is false, rewrite it as a true statement. If two events are mutually exclusive, they have no outcomes in common. Choose the correct answer below. A. True. B. False. If two events are mutually exclusive, they have every outcome in common. C. False. If two events are mutually exclusive, they have some outcomes in common.

Ask by Ramirez Wright. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A. True.

Solución

The statement "If two events are mutually exclusive, they have no outcomes in common" is true. So, the correct answer is: A. True.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

A. True. When two events are mutually exclusive, it means they cannot happen at the same time; they have no outcomes in common. So, if one event occurs, the other cannot! This concept is often used in probability to simplify the analysis of different outcomes in scenarios like games or experiments.

preguntas relacionadas

1. a. Explain the lack of memory property of exponential distribution b. The time between the arrival of an electronic message at a computer is exponentially distributed with mean of two hours. i. what is the probability that a message is received during a two-hour period? ii. If a message has not been received in the last four hours, what is the probability a message will be received in the next two-hour period? iii. Comment on the results obtained in (i) and (ii) above 2. a. State and prove Chebyshev's inequality for a random variable \( X \) b. \( X \) is a random variable with an unknown distribution with mean \( \mu_{x}=100 \) and variance \( \sigma_{x}^{2}=10 \). Use Chebyshev's inequality to estimate i. \( P(X \geq 120) \) ii. \( P(X \leq 75) \) 3. a. Show that \( \binom{n+2}{r+1}=\binom{n+1}{r+1}+\binom{n+1}{r} \) bi. Find the number n of distinct permutations that can be formed from all the letters of the word SOCIOLOGICAL bii. Find the number of ways a 4 -member committee with 2 men and 2 women can be selected from a class of 6 men and 4 women. 4. ai. Show that the MGF of a random variable \( X \) having Poisson distribution with pdf \( f(x)=\frac{e^{-t} \lambda^{x}}{x!}, x=0,1,2, \ldots \) is \( M_{x}(t)=e^{-\lambda\left(1-e^{\prime}\right)} \) aii. Show that it's mean and variance are \( \lambda \) b. Supposed the number of customers that enter a bank in an hour is a Poisson random variable and supposed that \( P(X=0)=0.05 \) i. Determine the mean and variance of \( X \)
Probability Nigeria Jan 30, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad