Pregunta
upstudy study bank question image url

Which of the following correctly identifies how \( h(x)=2 x^{3} \) compares to its parent function? (1 point) \( h(x) \) is the result of the cubic parent function being vertically translated up. \( h(x) \) is the result of the cubic parent function being vertically stretched. \( h(x) \) is the result of the cubic parent function being vertically translated down. \( h(x) \) is the result of the cubic parent function being vertically compressed.

Ask by Wyatt Munoz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( h(x) \) is the result of the cubic parent function being vertically stretched.

Solución

The function \( h(x) = 2x^3 \) is a transformation of the parent cubic function \( f(x) = x^3 \). When a function is multiplied by a constant greater than 1, it results in a **vertical stretch**. In this case, the factor is 2, which means the graph of \( h(x) \) is stretched vertically by a factor of 2 compared to the parent function. **Correct Answer:** \( h(x) \) is the result of the cubic parent function being vertically stretched.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The function \( h(x) = 2x^3 \) can be seen as a vertical stretch of the cubic parent function \( f(x) = x^3 \). The coefficient \( 2 \) multiplies the output values of the basic cubic function, causing the graph to stretch away from the x-axis. As a result, points on the graph will rise (or fall) more steeply than they would under the parent function. In contextual terms, think of it like a rubber band! When you pull the rubber band (which represents the basic cubic function) further away from the center (the x-axis), it becomes stretched and amplifies its movement. So every point on \( h(x) \) reaches new heights (or depths) compared to its more mellow parent function.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad