Determine the point-slope form of a line passing through the points \( (1, 2) \) and \( (3, 8) \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the point-slope form of a line passing through the points \( (1, 2) \) and \( (3, 8) \), we first need to calculate the slope (\( m \)) of the line. The slope formula is given by: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in our points \( (x_1, y_1) = (1, 2) \) and \( (x_2, y_2) = (3, 8) \): \[ m = \frac{8 - 2}{3 - 1} = \frac{6}{2} = 3 \] Now that we have the slope, we can use the point-slope form equation, which is: \[ y - y_1 = m(x - x_1) \] Choosing point \( (1, 2) \): \[ y - 2 = 3(x - 1) \] This is the point-slope form of the line. Expanding it will give you: \[ y - 2 = 3x - 3 \implies y = 3x - 1 \] So, the point-slope form is \( y - 2 = 3(x - 1) \).