Pregunta
upstudy study bank question image url

A line passes through the point \( (-5,4) \) and has a slope of -2 . Write an equation in slope-intercept form for this line.

Ask by Summers Rogers. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line in slope-intercept form is \( y = -2x - 6 \).

Solución

To find the equation of a line in slope-intercept form (\( y = mx + b \)) that passes through the point \( (-5, 4) \) and has a slope (\( m \)) of \(-2\), follow these steps: 1. **Use the Point-Slope Formula:** The point-slope form of a line is given by: \[ y - y_1 = m(x - x_1) \] where \( (x_1, y_1) \) is a point on the line and \( m \) is the slope. 2. **Plug in the Given Values:** Here, \( (x_1, y_1) = (-5, 4) \) and \( m = -2 \). \[ y - 4 = -2(x - (-5)) \\ y - 4 = -2(x + 5) \] 3. **Simplify to Slope-Intercept Form:** Distribute the slope on the right side: \[ y - 4 = -2x - 10 \] Add 4 to both sides to solve for \( y \): \[ y = -2x - 6 \] **Final Equation:** \[ y = -2x - 6 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To write the equation of a line in slope-intercept form (y = mx + b), we start with the slope (m) and a point on the line. Here, our slope is -2 and the point is (-5, 4). Using the point-slope form: \[ y - y_1 = m(x - x_1) \] Substituting in our values: \[ y - 4 = -2(x + 5) \] Distributing the -2 gives: \[ y - 4 = -2x - 10 \] Adding 4 to both sides: \[ y = -2x - 6 \] So, the equation of the line in slope-intercept form is \( y = -2x - 6 \). To make the math feel a bit more playful, consider this: Every straight line has its own unique dance move! This slope of -2 means it descends quickly—one step to the right, and it goes two steps down! Now let’s have a little fun with real-world applications. Imagine you're tracking how the temperature changes during the evening. If you know that the temperature at a certain point is 4 degrees but drops by 2 degrees every hour, you could use a similar equation to predict how cold it’ll get at different times! This mathematical relationship isn’t just for lines; it's a great way to understand all sorts of trends!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad