Pregunta
upstudy study bank question image url

Solve the following inequality. \[ \frac{9}{x+1}<3 \] Write your answer using interval notation

Ask by Burton Deleon. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the inequality \(\frac{9}{x+1} < 3\) is all real numbers less than -1 or greater than 2. In interval notation, this is \((-\infty, -1) \cup (2, \infty)\).

Solución

To solve the inequality: \[ \frac{9}{x+1} < 3 \] follow these steps: 1. **Subtract 3 from both sides:** \[ \frac{9}{x+1} - 3 < 0 \] 2. **Combine the terms over a common denominator:** \[ \frac{9 - 3(x + 1)}{x + 1} < 0 \] \[ \frac{9 - 3x - 3}{x + 1} < 0 \] \[ \frac{6 - 3x}{x + 1} < 0 \] 3. **Factor out the negative sign:** \[ \frac{3(2 - x)}{x + 1} < 0 \] 4. **Identify the critical points where the expression is zero or undefined:** - \( x = 2 \) (numerator is zero) - \( x = -1 \) (denominator is zero, undefined) 5. **Determine the intervals to test:** - \( x < -1 \) - \( -1 < x < 2 \) - \( x > 2 \) 6. **Test each interval:** - **For \( x < -1 \):** - Numerator \( 2 - x > 0 \) - Denominator \( x + 1 < 0 \) - The expression is negative: **True** - **For \( -1 < x < 2 \):** - Numerator \( 2 - x > 0 \) - Denominator \( x + 1 > 0 \) - The expression is positive: **False** - **For \( x > 2 \):** - Numerator \( 2 - x < 0 \) - Denominator \( x + 1 > 0 \) - The expression is negative: **True** 7. **Combine the intervals where the inequality holds:** \[ x < -1 \quad \text{or} \quad x > 2 \] **In interval notation, the solution is:** \[ (-\infty, -1) \cup (2, \infty) \] **Answer:** \(\boxed{\,(-\infty,\ -1)\ \cup\ (2,\ \infty)\,}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \(\frac{9}{x+1} < 3\), we start by isolating the fraction: 1. Subtract 3 from both sides to get: \[\frac{9}{x+1} - 3 < 0\] 2. To combine the terms, we need a common denominator: \[\frac{9 - 3(x + 1)}{x + 1} < 0\] \[\frac{9 - 3x - 3}{x + 1} < 0\] \[\frac{6 - 3x}{x + 1} < 0\] 3. Factor out a 3 from the numerator: \[\frac{3(2 - x)}{x + 1} < 0\] 4. The inequality \(\frac{3(2 - x)}{x + 1} < 0\) will change signs at the critical points where the numerator or denominator equals zero: - Numerator \(3(2 - x) = 0 \Rightarrow x = 2\) - Denominator \(x + 1 = 0 \Rightarrow x = -1\) 5. Now, we will use these points to test intervals around them: - Interval 1: \((- \infty, -1)\) - Interval 2: \((-1, 2)\) - Interval 3: \((2, \infty)\) 6. Choose test points from each interval to determine the sign of the expression: - For \(x = -2\): \[\frac{3(2 - (-2))}{-2 + 1} = \frac{3(4)}{-1} = -12\] (negative) - For \(x = 0\): \[\frac{3(2 - 0)}{0 + 1} = \frac{3(2)}{1} = 6\] (positive) - For \(x = 3\): \[\frac{3(2 - 3)}{3 + 1} = \frac{3(-1)}{4} = -\frac{3}{4}\] (negative) 7. Thus, the expression is negative in the intervals \((- \infty, -1)\) and \((2, \infty)\). 8. We also note that at \(x = -1\), the expression is undefined, so we do not include that point. 9. Finally, we have our solution in interval notation: \[ (-\infty, -1) \cup (2, \infty) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad