find the value of \( P \) \( 3=\frac{4}{1-\frac{p}{4}} \) \( 3=4 \times \frac{4}{4-P} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To isolate \( P \), let's first simplify the equation \( 3=\frac{4}{1-\frac{p}{4}} \). 1. Start by multiplying both sides by \( 1 - \frac{p}{4} \): \[ 3\left(1 - \frac{p}{4}\right) = 4 \] 2. Distributing the 3 gives: \[ 3 - \frac{3p}{4} = 4 \] 3. Now, isolate \( \frac{3p}{4} \): \[ 3 - 4 = \frac{3p}{4} \] \[ -1 = \frac{3p}{4} \] 4. To get rid of the fraction, multiply both sides by 4: \[ -4 = 3p \] 5. Finally, divide by 3: \[ p = -\frac{4}{3} \] Now, let’s look at the second equation \( 3=4 \times \frac{4}{4-P} \). 1. First, simplify it by isolating the fraction: \[ 3 = \frac{16}{4 - P} \] 2. Multiply both sides by \( 4 - P \): \[ 3(4 - P) = 16 \] 3. Distributing the 3 gives: \[ 12 - 3P = 16 \] 4. Rearranging terms to isolate \( 3P \): \[ -3P = 16 - 12 \] \[ -3P = 4 \] 5. Dividing by -3 gives: \[ P = -\frac{4}{3} \] Thus, the value of \( P \) is \( -\frac{4}{3} \).