Pregunta
upstudy study bank question image url

a) \( (x-3)(x+3) \) b) \( (x+7)^{2} \) c) \( (2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right) \)

Ask by Collins Parsons. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) \( x^2 - 9 \) b) \( x^2 + 14x + 49 \) c) \( 8x^3 + 27y^3 \)

Solución

It looks like you have three algebraic expressions, and I'll assume you'd like them simplified or expanded. Here's how each one can be handled: ### a) \( (x - 3)(x + 3) \) This is a product of two conjugates, which follows the difference of squares formula: \[ (a - b)(a + b) = a^2 - b^2 \] Applying this to your expression: \[ (x - 3)(x + 3) = x^2 - 3^2 = x^2 - 9 \] **Simplified Form:** \[ x^2 - 9 \] --- ### b) \( (x + 7)^2 \) This is a perfect square trinomial, which can be expanded using the formula: \[ (a + b)^2 = a^2 + 2ab + b^2 \] Applying this to your expression: \[ (x + 7)^2 = x^2 + 2(x)(7) + 7^2 = x^2 + 14x + 49 \] **Expanded Form:** \[ x^2 + 14x + 49 \] --- ### c) \( (2x + 3y)\left(4x^2 - 6xy + 9y^2\right) \) Notice that the second polynomial inside the parentheses resembles the form \( a^2 - ab + b^2 \), which is part of the sum of cubes factorization: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, \( a = 2x \) and \( b = 3y \). Therefore: \[ (2x + 3y)\left(4x^2 - 6xy + 9y^2\right) = (2x)^3 + (3y)^3 = 8x^3 + 27y^3 \] **Expanded Form:** \[ 8x^3 + 27y^3 \] --- ### Summary - **a)** \( (x - 3)(x + 3) = x^2 - 9 \) - **b)** \( (x + 7)^2 = x^2 + 14x + 49 \) - **c)** \( (2x + 3y)(4x^2 - 6xy + 9y^2) = 8x^3 + 27y^3 \) If you had a different intention for these expressions, please provide more details, and I'd be happy to assist further!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The expression \( (x-3)(x+3) \) is a classic difference of squares, which simplifies beautifully to \( x^2 - 9 \). This nifty little trick allows you to quickly see that you can eliminate the middle term and jump straight to the result, showcasing the power of algebraic identities! For \( (x+7)^{2} \), this is an example of squaring a binomial. Using the formula \( (a+b)^2 = a^2 + 2ab + b^2 \), it expands to \( x^2 + 14x + 49 \). This provides a fantastic opportunity to see how expanding reveals the beauty of polynomial expressions – it's like peeling back the layers of an onion to discover its core! Now, for \( (2x + 3y)(4x^{2} - 6xy + 9y^{2}) \), you'll apply the distributive property. Start by multiplying \( 2x \) with each term in the second expression, and then do the same with \( 3y \). This will reveal a more complex polynomial, emphasizing how combining terms leads to elegant results in algebraic expansions! Make sure to keep track of your coefficients and like terms to ensure everything simplifies nicely.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad