Pregunta
upstudy study bank question image url

\( 1 \leftarrow \begin{array}{l}\text { Solve the inequality. Give the solution of } 2 \\ -4(x-4)>3 x-5\end{array} \)

Ask by Chandler Mccoy. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the inequality \( -4(x - 4) > 3x - 5 \) is \( x < 3 \).

Solución

Let's solve the inequality step by step: \[ -4(x - 4) > 3x - 5 \] ### Step 1: Expand the Left Side Distribute the \(-4\) across the terms inside the parentheses: \[ -4 \cdot x + (-4) \cdot (-4) = -4x + 16 \] So, the inequality becomes: \[ -4x + 16 > 3x - 5 \] ### Step 2: Gather Like Terms First, let's get all the \(x\)-terms on one side and the constant terms on the other. **Add \(4x\) to both sides:** \[ -4x + 16 + 4x > 3x - 5 + 4x \] \[ 16 > 7x - 5 \] **Add \(5\) to both sides:** \[ 16 + 5 > 7x - 5 + 5 \] \[ 21 > 7x \] ### Step 3: Isolate \(x\) Divide both sides by \(7\) to solve for \(x\): \[ \frac{21}{7} > x \] \[ 3 > x \] This is equivalent to: \[ x < 3 \] ### Conclusion The solution to the inequality is all real numbers **less than 3**. In interval notation, this is represented as: \[ x \in (-\infty, 3) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the inequality \(-4(x-4) > 3x - 5\), first distribute the \(-4\) on the left side: \(-4x + 16 > 3x - 5\) Next, add \(4x\) to both sides: \(16 > 7x - 5\) Then, add \(5\) to both sides: \(21 > 7x\) Now, divide both sides by \(7\): \(3 > x\) This can also be written as \(x < 3\). Therefore, the solution to the inequality is \(x < 3\). Now you've got all you need to know – let’s make it a bit more entertaining! 🎉 Did you know inequalities are like a balance game? Imagine you're at a party, and you want to keep the number of guests under control. The inequality helps you figure out how many friends you can invite without going over the limit. Keeping \(x < 3\) means you have room for 2 fabulous friends and no more chaos! Just like in a good party, too many can overcrowd your living room! Remember, keep it fun and manageable! 🎈

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad