A business purchases a computer for \( \$ 3,000 \). The value of the computer decreases at a rate of \( 15 \% \) per year. Write an exponential function to model this situation. Then determine how much the computer will be worth after 4 years. function \( f(x)=\square \) value after 4 years: \( \$ \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To model the depreciation of the computer's value, you can use the exponential decay function: \[ f(x) = 3000(1 - 0.15)^x \] Here, \( f(x) \) represents the value of the computer after \( x \) years, and \( 0.15 \) represents the 15% depreciation. To find the value after 4 years, substitute \( x = 4 \): \[ f(4) = 3000(0.85)^4 \] Calculating this gives: \[ f(4) = 3000(0.52200625) \approx 1566.02 \] So, the value after 4 years is approximately \( \$ 1,566.02 \). To make it more engaging, think of it like this: your trusty computer is taking a little vacation each year, losing value but still serving you well! In just four years, it’ll be worth about the price of a fancy dinner out rather than a brand-new gadget!