Pregunta

Find the region's area that is enclosed by the curves \( y = x^{3} \) and \( y = 3x - x^{2} \).

Ask by Harris Nichols. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area enclosed by the curves \( y = x^3 \) and \( y = 3x - x^2 \) is \( \frac{73}{12} \) square units.

Solución

To find the area enclosed by the curves \( y = x^3 \) and \( y = 3x - x^2 \), follow these steps: 1. **Find the Points of Intersection:** Set the equations equal to each other to find the points where they intersect: \[ x^3 = 3x - x^2 \implies x^3 + x^2 - 3x = 0 \implies x(x^2 + x - 3) = 0 \] This gives three solutions: \[ x = 0 \quad \text{and} \quad x = \frac{-1 \pm \sqrt{13}}{2} \] Let: \[ a = \frac{-1 - \sqrt{13}}{2} \quad \text{and} \quad c = \frac{-1 + \sqrt{13}}{2} \] 2. **Determine Which Function is on Top:** - For \( x \) between \( a \) and \( 0 \), \( y = x^3 \) is above \( y = 3x - x^2 \). - For \( x \) between \( 0 \) and \( c \), \( y = 3x - x^2 \) is above \( y = x^3 \). 3. **Set Up the Integrals:** The area \( A \) is the sum of two integrals: \[ A = \int_{a}^{0} (x^3 - (3x - x^2)) \, dx + \int_{0}^{c} ((3x - x^2) - x^3) \, dx \] 4. **Evaluate the Integrals:** After simplifying and performing the integration, the total area comes out to: \[ A = \frac{73}{12} \text{ square units} \] **Final Answer:** The enclosed area is 73⁄12 square units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the area enclosed by the curves \( y = x^3 \) and \( y = 3x - x^2 \), we first need to determine the points of intersection of the two curves. We set the equations equal to each other: \[ x^3 = 3x - x^2 \] Rearranging, we find: \[ x^3 + x^2 - 3x = 0 \] Factoring out an \( x \): \[ x(x^2 + x - 3) = 0 \] This gives us one solution at \( x = 0 \). For the quadratic \( x^2 + x - 3 \), we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 12}}{2} = \frac{-1 \pm \sqrt{13}}{2} \] This gives us two more intersection points: \[ x = \frac{-1 + \sqrt{13}}{2}, \quad x = \frac{-1 - \sqrt{13}}{2} \] However, only \( x = \frac{-1 + \sqrt{13}}{2} \) is relevant since it's positive. Next, we identify the area between the curves from \( x = 0 \) to \( x = \frac{-1 + \sqrt{13}}{2} \). The area \( A \) can be calculated using the integral of the upper curve minus the lower curve: \[ A = \int_{0}^{\frac{-1 + \sqrt{13}}{2}} ((3x - x^2) - x^3) \, dx \] Calculating the integral: \[ A = \int_{0}^{\frac{-1 + \sqrt{13}}{2}} (3x - x^2 - x^3) \, dx \] We find: \[ = \left[ \frac{3}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 \right]_{0}^{\frac{-1 + \sqrt{13}}{2}} \] Evaluating at the bounds gives us the area. The final area will be a numerical value that can be calculated after plugging in the upper limit into our integrated formula and subtracting the lower limit's value (which is zero). This area represents the space between these two beautifully curved equations!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad