Pregunta
Simplify. Express your answer using exponents. \( \left(g^{12} h^{-2}\right)^{-2} \)
Ask by Vaughan Rodriguez. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( \frac{h^{4}}{g^{24}} \).
Solución
Calculate or simplify the expression \( (g^{12} * h^{-2})^{-2} \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(g^{12}h^{-2}\right)^{-2}\)
- step1: Use the properties of exponents:
\(\left(g^{12}\right)^{-2}\left(h^{-2}\right)^{-2}\)
- step2: Evaluate the power:
\(g^{-24}h^{4}\)
- step3: Simplify:
\(\frac{h^{4}}{g^{24}}\)
The simplified expression is \( \frac{h^{4}}{g^{24}} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \( \left(g^{12} h^{-2}\right)^{-2} \), we apply the power of a power rule, which states that \( (a^m)^n = a^{m \cdot n} \). So we distribute the exponent \(-2\) to both terms inside the parentheses: \[ \left(g^{12}\right)^{-2} \cdot \left(h^{-2}\right)^{-2} = g^{12 \cdot (-2)} \cdot h^{-2 \cdot (-2)} = g^{-24} \cdot h^{4} \] Now, we can express this using positive exponents by rewriting \(g^{-24}\) as \(\frac{1}{g^{24}}\): \[ \frac{h^4}{g^{24}} \] Thus, the final simplified expression is: \[ \frac{h^4}{g^{24}} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium