Pregunta
10:05 5G 80 Assignment Overview 10 DeltaMath Interior and Exterior Triangle Angles © This is the only question in this section. Question Video Examples In \( \triangle \mathrm{DEF}, \overline{D F} \) is extended through point F to point \( \mathrm{G}, \mathrm{m} \angle F D E=(x+2)^{\circ} \), \( \mathrm{m} \angle D E F=(2 x+3)^{\circ} \), and \( \mathrm{m} \angle E F G=(6 x-16)^{\circ} \). What is the value of \( x \) ? Answer Attempt 1 out of 2 \( \square \) Submit Answer Copyright ©2025 DeltaMath.com All Rights Reserved. Terms \& Policies deltamath.com
Ask by Hilton Johnson. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 7 \)
Solución
To determine the value of \( x \) in the given triangle configuration, let's analyze the information step by step.
### Given:
- **Triangle DEF** with points \( D \), \( E \), and \( F \).
- **\( \overline{DF} \)** is extended through point \( F \) to point \( G \).
- **Angles:**
- \( \angle FDE = (x + 2)^\circ \)
- \( \angle DEF = (2x + 3)^\circ \)
- \( \angle EFG = (6x - 16)^\circ \)
### Objective:
Find the value of \( x \).
### Step-by-Step Solution:
1. **Sum of Interior Angles in Triangle DEF:**
The sum of the interior angles in any triangle is \( 180^\circ \).
\[
\angle FDE + \angle DEF + \angle DFE = 180^\circ
\]
Plugging in the given expressions:
\[
(x + 2) + (2x + 3) + \angle DFE = 180
\]
Combine like terms:
\[
3x + 5 + \angle DFE = 180
\]
Solving for \( \angle DFE \):
\[
\angle DFE = 180 - (3x + 5) = 175 - 3x
\]
2. **Exterior Angle at Point F (Angle EFG):**
When \( \overline{DF} \) is extended to \( G \), \( \angle EFG \) becomes an exterior angle at point \( F \).
**Exterior Angle Theorem:**
The measure of an exterior angle is equal to the sum of the measures of the two non-adjacent interior angles.
Therefore:
\[
\angle EFG = \angle FDE + \angle DEF = (x + 2) + (2x + 3) = 3x + 5
\]
3. **Setting Up the Equation:**
According to the problem, \( \angle EFG = (6x - 16)^\circ \). Therefore:
\[
3x + 5 = 6x - 16
\]
4. **Solving for \( x \):**
Subtract \( 3x \) from both sides:
\[
5 = 3x - 16
\]
Add \( 16 \) to both sides:
\[
21 = 3x
\]
Divide both sides by \( 3 \):
\[
x = 7
\]
### **Answer:**
\( x = 7 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
In any triangle, the sum of the interior angles always equals 180 degrees. Additionally, when you extend a side, the exterior angle formed is equal to the sum of the two opposite interior angles. This means you can set up the equation: \( m\angle FDE + m\angle DEF = m\angle EFG \) to find \( x \). For this specific problem, plug in the expressions given: \((x + 2) + (2x + 3) = (6x - 16)\). By simplifying this equation, you'll find a solution for \( x \). Just be careful with combining like terms and isolating \( x \)!
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium