Using the rational root theorem, list out all possible/candidate rational roots of \( f(x)=19 x^{4}+6 x^{5}-2+6 x-23 x^{3} \). Express your answer as integers or as fractions in simplest form. Use commas to separate.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To apply the rational root theorem, we first need to identify the coefficients of the polynomial \( f(x) = 6x^5 + 19x^4 - 23x^3 + 6x - 2 \). The potential rational roots are given by the formula \( \frac{p}{q} \), where \( p \) is a factor of the constant term (-2) and \( q \) is a factor of the leading coefficient (6). The factors of -2 are: ±1, ±2 The factors of 6 are: ±1, ±2, ±3, ±6 Now we list all combinations of \( \frac{p}{q} \): 1. From \( p = 1 \): \( \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6} \) → 1, 0.5, 0.333..., 0.1666... 2. From \( p = -1 \): \( \frac{-1}{1}, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{6} \) → -1, -0.5, -0.333..., -0.1666... 3. From \( p = 2 \): \( \frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \frac{2}{6} \) → 2, 1, 0.666..., 0.333... 4. From \( p = -2 \): \( \frac{-2}{1}, \frac{-2}{2}, \frac{-2}{3}, \frac{-2}{6} \) → -2, -1, -0.666..., -0.333... After simplifying, the rational candidate roots we get are: ±1, ±2, ±1/2, ±1/3, ±1/6, ±1/2 So, the complete list of possible rational roots is: 1, -1, 2, -2, 0.5, -0.5, 0.333..., -0.333..., 0.1666..., -0.1666... Expressed in a more standard format that avoids decimals while retaining simplicity: 1, -1, 2, -2, 1/2, -1/2, 1/3, -1/3, 1/6, -1/6.