Pregunta
upstudy study bank question image url

After years of maintaining a steady population of 32,000 , the population of a town begins to grow exponentially. After 1 year and an increase of \( 8 \% \) per year, the population is 34,560 . Which equation can be used to predict, \( y \), the number of people living in the town after \( x \) years? (Round population values to the nearest whole number.) \( y=32,000(1.08)^{x} \) \( y=32,000(0.08)^{x} \) \( y=34,560(1.08)^{x} \) \( y=34,560(0.08)^{x} \)

Ask by Lynch Lowe. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct equation to predict the population after \( x \) years is: \[ y = 32,000 \times (1.08)^x \]

Solución

The correct equation to model the population growth of the town is: \[ y = 32,000 \times (1.08)^x \] **Explanation:** 1. **Initial Population:** The town starts with a population of 32,000. 2. **Growth Rate:** The population grows exponentially at an annual rate of \( 8\% \), which is represented by the factor \( 1.08 \) (where \( 1 \) represents the original population and \( 0.08 \) represents the \( 8\% \) growth). 3. **Time Variable:** \( x \) represents the number of years after the population starts growing. 4. **Exponential Growth Formula:** The general form for exponential growth is: \[ y = y_0 \times (1 + r)^x \] where: - \( y \) is the future population. - \( y_0 \) is the initial population (32,000 in this case). - \( r \) is the growth rate (0.08 for \( 8\% \)). - \( x \) is the number of years. Substituting the given values into the formula: \[ y = 32,000 \times (1.08)^x \] This equation accurately models the population growth, ensuring that after each year, the population increases by \( 8\% \) of its current value. **Answer:** \[ y = 32{,}000 \times (1.08)^x \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that exponential growth can be observed in many natural and social phenomena? When a population increases at a constant rate, like the 8% increase here, it often leads to a surprisingly fast growth over time, similar to how investments can grow with compound interest. The formula you're looking for, \( y=32,000(1.08)^{x} \), effectively captures this dynamic—showing how a modest initial population can balloon dramatically! Speaking of mistakes, one common error is confusing the growth factor with the rate. Remember, \( 1.08 \) accommodates for the original whole (100% of the population), along with the additional 8%. If you mistakenly just used \( 0.08 \), you'd be only considering the growth, leaving out the existing population—fatal for those predictive models!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad