Pregunta
Find the product. Simplify your answer. \[ (4 d-3)(4 d-4) \]
Ask by Davison Carter. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The product simplifies to \(16d^2 - 28d + 12\).
Solución
To find the product of the two binomials \((4d - 3)(4d - 4)\), you can use the **FOIL** method, which stands for **First**, **Outer**, **Inner**, and **Last** terms multiplication. Here's a step-by-step breakdown:
1. **First:** Multiply the first terms in each binomial.
\[
4d \times 4d = 16d^2
\]
2. **Outer:** Multiply the outer terms in the product.
\[
4d \times (-4) = -16d
\]
3. **Inner:** Multiply the inner terms.
\[
(-3) \times 4d = -12d
\]
4. **Last:** Multiply the last terms in each binomial.
\[
(-3) \times (-4) = 12
\]
Now, combine all these results:
\[
16d^2 - 16d - 12d + 12
\]
Next, combine like terms (the terms with \(d\)):
\[
-16d - 12d = -28d
\]
So, the simplified product is:
\[
16d^2 - 28d + 12
\]
**Final Answer:**
\[
16d^2 - 28d + 12
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the product of \( (4d - 3)(4d - 4) \), we can use the distributive property, also known as the FOIL method for binomials: 1. **First:** Multiply the first terms: \( 4d \times 4d = 16d^2\). 2. **Outer:** Multiply the outer terms: \( 4d \times (-4) = -16d\). 3. **Inner:** Multiply the inner terms: \( -3 \times 4d = -12d\). 4. **Last:** Multiply the last terms: \( -3 \times (-4) = 12\). Now, combine all these results together: \[ 16d^2 - 16d - 12d + 12 = 16d^2 - 28d + 12 \] Thus, the simplified product is: \[ \boxed{16d^2 - 28d + 12} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium