Pregunta
upstudy study bank question image url

Find the product. Simplify your answer. \[ (4 d-3)(4 d-4) \]

Ask by Davison Carter. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The product simplifies to \(16d^2 - 28d + 12\).

Solución

To find the product of the two binomials \((4d - 3)(4d - 4)\), you can use the **FOIL** method, which stands for **First**, **Outer**, **Inner**, and **Last** terms multiplication. Here's a step-by-step breakdown: 1. **First:** Multiply the first terms in each binomial. \[ 4d \times 4d = 16d^2 \] 2. **Outer:** Multiply the outer terms in the product. \[ 4d \times (-4) = -16d \] 3. **Inner:** Multiply the inner terms. \[ (-3) \times 4d = -12d \] 4. **Last:** Multiply the last terms in each binomial. \[ (-3) \times (-4) = 12 \] Now, combine all these results: \[ 16d^2 - 16d - 12d + 12 \] Next, combine like terms (the terms with \(d\)): \[ -16d - 12d = -28d \] So, the simplified product is: \[ 16d^2 - 28d + 12 \] **Final Answer:** \[ 16d^2 - 28d + 12 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the product of \( (4d - 3)(4d - 4) \), we can use the distributive property, also known as the FOIL method for binomials: 1. **First:** Multiply the first terms: \( 4d \times 4d = 16d^2\). 2. **Outer:** Multiply the outer terms: \( 4d \times (-4) = -16d\). 3. **Inner:** Multiply the inner terms: \( -3 \times 4d = -12d\). 4. **Last:** Multiply the last terms: \( -3 \times (-4) = 12\). Now, combine all these results together: \[ 16d^2 - 16d - 12d + 12 = 16d^2 - 28d + 12 \] Thus, the simplified product is: \[ \boxed{16d^2 - 28d + 12} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad