Pregunta
Solve for \( u \). \[ 6 u-45=-3(u-6) \] Simplify your answer as much as possible. \( u=\square \)
Ask by Lindsey Love. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( u = 7 \)
Solución
To solve for \( u \) in the equation:
\[
6u - 45 = -3(u - 6)
\]
**Step 1:** Distribute the \(-3\) on the right side.
\[
6u - 45 = -3u + 18
\]
**Step 2:** Move all terms involving \( u \) to one side and constant terms to the other side. Add \( 3u \) to both sides:
\[
6u + 3u - 45 = 18
\]
\[
9u - 45 = 18
\]
**Step 3:** Add \( 45 \) to both sides to isolate the term with \( u \):
\[
9u = 63
\]
**Step 4:** Divide both sides by \( 9 \) to solve for \( u \):
\[
u = \frac{63}{9} = 7
\]
\[
u = 7
\]
**Final Answer:**
\[
u = 7
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve for \( u \), start by distributing on the right-hand side of the equation: \[ 6u - 45 = -3(u - 6) \] \[ 6u - 45 = -3u + 18 \] Next, add \( 3u \) to both sides to get all the \( u \) terms on one side: \[ 6u + 3u - 45 = 18 \] \[ 9u - 45 = 18 \] Now, add 45 to both sides: \[ 9u = 18 + 45 \] \[ 9u = 63 \] Finally, divide both sides by 9: \[ u = \frac{63}{9} \] \[ u = 7 \] So, \( u = 7 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium